
1
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Abstract—Capturing both the shape of the spectral continuum
and the positions/widths of absorption bands is essential to
accurately measure similarity between hyperspectral signature.
Furthermore, the relative importances of these features are
data dependent. In this work, we present an adaptive version
of our recently proposed CICR (Continuum Intact/Continuum
Removed) similarity measure which automatically determines a
convex weighting between similarity measurements of Continuum
Intact (CI) and Continuum Removed (CR) signatures according
to input data. We describe an efficient technique to calculate
an optimal weight for a linear combination of CI and CR
similarity measurements. We evaluate the technique on AVIRIS
spectra sampled from a well-studied urban scene, and show
that our technique yields improved classification accuracy in
comparison to CI or CR similarity measurements alone, and
performs comparably to calculating the weight via brute-force
search, at much reduced computational cost. A source code
implementation of our algorithm is provided online.

Index Terms—hyperspectral, continuum removal, adaptive,
similarity measure, metric learning, linear discriminant analysis

I. SPECTRAL SIMILARITY MEASURES

THE widespread deployment of hyperspectral imaging
systems on both terrestrial and planetary orbiters allows

for highly detailed analysis of large scale regional surveys.
Improvements in both spectral and spatial resolution of these
systems drives the innovation of advanced image classification
techniques. Such image classification techniques have proven
an invaluable tool for analysts, as the sheer volume of the
collected data renders exhaustive manual image interpretation
impossible. Increasing data volumes demand algorithms which
not only are sophisticated enough to yield high classification
accuracies in various scenarios, but which are also efficient,
capable of processing large hyperspectral datasets quickly, for
example in ground-based archives, or in resource-constrained
/ real-time onboard applications.

A problem central to image classification is assessing sim-
ilarity between spectral signatures (pixels), which is chal-
lenging due to numerous factors such as data dimensionality,
noise, and environmental effects. Employing adaptive simi-
larity measures that exploit knowledge of known classes can
help mitigate these effects and improve classification accuracy,
potentially with fewer training samples than a task-agnostic
measure may require to achieve the same accuracy. Robust
spectral similarity measures must capture both the shape of
the spectra and the positions/widths of absorption bands. Most
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widely-used measures assume all spectral bands are of equal
importance, without specific emphasis on absorption features.
These measures take Continuum-Intact (CI) reflectance sig-
natures as input, which often poorly capture differences in
absorption features. To compensate for this, one can em-
ploy measures which characterize absorption features using
Continuum-Removed (CR) signatures. The CR representation
measures spectral absorption features by “dividing out” a
spectral continuum curve. The CR representation often better
captures the composition and concentration of the material
a spectral signature represents than its CI counterpart. But,
since signatures with considerably different continuua can
have equivalent CR representations (as observed in [1], [2],
and [3]), the CR representation alone can be an unreliable
descriptor in classification settings.

In this work, we present an adaptive similarity measure de-
signed specifically for hyperspectral signatures. Our measure,
dCICR, finds a compromise between the use of the continuum
shape and absorption features by calculating a scalar weight α
in a convex combination of CI and CR distance measurements
that best separates a set of training classes. When spectral
signatures contain significant absorption features, our mea-
sure better discriminates material classes in comparison to
measures considering CI or CR signatures alone. We evaluate
classification accuracy on real AVIRIS imagery from a well-
studied urban area, in scenarios consisting of prominent or
subtle absorption features.

II. THE CICR MEASURE

Given a pair of hyperspectral signatures xi and xj
1, each

in RD, we define the dCICR similarity measure as follows:

dCICR(xi,xj ,α) = (1− α)dCI(xi,xj) + αdCR(xi,xj) (1)

with

dCI(xi,xj) =

����
xi

�xi�
− xj

�xj�

���� (2)

dCR(xi,xj) =

����
CR(xi)

�CR(xi)�
− CR(xj)

�CR(xj)�

���� (3)

Here, � ·� is the L2 norm, α ∈ [0, 1] is a weighting parameter,
and CR(·) performs continuum removal. We estimate the
continuum of a given spectrum by fitting a piecewise linear
function to local maxima using the procedure described in [4].
Observations on the continuum are assigned values of zero,
and absorption features (observations between local maxima)

1In this and subsequent sections, we denote scalar variables in italics,
vectors in bold, and matrices in bold caps.
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are assigned values in the [0, 1] range, proportional to their
relative distance from the estimated continuum. Because the
continuum removal procedure is sensitive to spurious local
maxima, we smooth each signature using a moving average
filter before performing continuum removal. While smoothing
may mask small absorption features, such features are often
close to the noise floor of the sensor, and we accept this loss
in specificity in favor of noise reduction. In our experiments
using AVIRIS data, smoothing windows ranging from three to
five bands (0.03-0.05µm) have performed well.

Dividing the CI and CR signatures by the L2 norm is
important for several reasons. First, scaling each signature by
its norm maps both CI and CR distances to a common range.
This allows us to better tune the weight α to combine the
CI and CR similarity measurements according to input data.
Second, for CI signatures, this scaling mitigates linear effects
caused by differing illumination conditions (while preserving
spectral angles). Lastly, scaling CR signatures by their respec-
tive norms can accentuate discriminative absorption features
and can improve performance when classifying CR signatures.

The measure described in this work differs from our original
formulation in [4]. First, the convex combination of CI and CR
terms yields more consistent performance than applying α to
the CR term only. Second, due to the nature of continuum es-
timation, CR signatures contain many values near zero, which
provides little discriminating information between signatures
when combined with the CI distance measure. Scaling the CR
signatures uniformly by the variance of all CR distances (as
we originally described) does not resolve this issue, whereas
scaling each signature by its norm allows the most prominent
absorption features to play greater roles in discrimination.

III. COMBINING CI AND CR DISTANCE MEASUREMENTS

Figure 1 gives an overview of the methodology we use to
calculate the weight parameter α in Equation 1, which we
describe in detail below.
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Fig. 1. Processing steps for calculating dCICR weight parameter α.

Given a set of N vectors {xi}Ni=1, xi ∈ RD belonging to K
classes, with labels yi ∈ [1,K], we calculate α using a method
inspired by multiclass linear discriminant analysis (LDA) ([5],
[6]). Multiclass LDA computes the vector w that maximizes
the Rayleigh quotient (using the formulation given in [7])

S = (wTMBw)(wTMWw)−1 (4)

where MB and MW are (symmetric, positive-definite)
between-class separation and within-class scatter matrices. We
form the MB and MW matrices according to the capability of
each of the {dCI, dCR} measures to separate the given classes.
Specifically, we define the between-class separation, sb, and
within-class scatter, sw, between measures d1, d2 as:

sb(d1, d2) =
K�

j=1

Njd1(µj ,µ)d2(µj ,µ) (5)

sw(d1, d2) =
K�

j=1

�

i:yi=j

d1(xi,µj)d2(xi,µj) (6)

where
�
µj

�K

j=1
are the mean vectors of each of the K classes,

µ is the mean of the µj , and Nj is the number of samples in
class j. We then form the MB and MW matrices as follows:

MB =
1

N

�
sb(dCI, dCI) sb(dCI, dCR)
sb(dCI, dCR) sb(dCR, dCR)

�
(7)

MW =
1

N

�
sw(dCI, dCI) sw(dCI, dCR)
sw(dCI, dCR) sw(dCR, dCR)

�
(8)

The first (largest) eigenvector of M−1
W MB , w, maximizes

Equation 4, with separation S equal to the corresponding
eigenvalue [7]. The components of w = [wCI , wCR] provide
a weighting of the CI and CR distances with good class
separation on training data, but is not necessarily convex (as
we require in Equation 1), and may not generalize well to test
data. Because Rayleigh quotients are invariant with respect to
scaling of w (i.e., for any c > 0, cw also maximizes Equation
4) [8], we can scale the components of w to a convex range
by dividing each component by �w�1. This yields the convex
pair {wCI/�w�1, wCR/�w�1} = {(1− α),α}, as desired.

As Equation 4 may become ill-posed, we regularize the
within-class scatter matrix via a shrinkage operator:

M�
W = (1− λ)MW + λI (9)

where λ ∈ (0, 1) is a regularization parameter, and I is the
(2 × 2) identity matrix. In practice, we select λ via cross-
validation, using the methodology described in the next sec-
tion. We provide implementations of our LDA-based algorithm
and the continuum removal algorithm we used at the following
url http://www.ece.rice.edu/∼bdb1/#code.

IV. CASE STUDY: AVIRIS SPECTRAL SIGNATURES

The starting point of the work described here is a set of
reflectance spectra sampled across distinct material species
from a Low-Altitude Airborne Visible / Infrared Imaging
Spectrometer (AVIRISLA) image of Ocean City, MD. This
image (acquired Nov 5, 1998, with 4 m / pixel spatial
resolution, in 220 spectral bands from 0.4 2.5 µm) was



3

analyzed in previous work to capture spectral clusters, verify
them against field knowledge and identify materials they
represent, as reported in detail in [9]. The 35 clusters resulting
from [9] guided the extraction of a trustworthy representative
subset of spectra for this study, by stratified random sampling
across 14 of those 35 clusters for which material identification
was unambiguous, and which served the methodology design
for this work. The design is explained below. The work in
[9] performed all the necessary pre-processing of this image
including atmospheric correction, conversion of radiances to
reflectances, and normalization to cancel illumination effects.
These preprocessing steps are duly described in [9]. For this
work the reflectance spectra were extracted from the already
pre-processed Ocean City image. The number of samples per
class is constrained by the size of the smallest cluster (≈145
samples), and we fix the number of samples per class to
100 for most of our analysis, and characterize classification
accuracy vs. training set size later in this section (Figure 4).

This work is a deeper analysis of previous work ([3],
[4]) that examines three different spectral scenarios specifi-
cally constructed to contrast the performance of the proposed
method. In the first, all samples contain only minor absorp-
tions, where we define a “minor” absorption as one with no CR
band depths greater than threshold τ ; we use τ = 0.1 (10%
absorption with respect to the continuum) in this work. In
this case, we expect similar classification accuracies from the
dCICR and dCI measures, since the CR signatures lack prominent
absorption features (and therefore are flat and uninformative).
The classes in this scenario consist of asphalt rooftop materials
(class A), roads/parking lots (classes I, J, T, W, and h), and
dry beach sand (class e). Figure 2 (top) shows the CI and
CR mean signatures for these classes. In the second scenario,
all signatures contain one or more major absorptions, where
we define major absorptions as those with CR values greater
than τ . Here, we expect a more significant boost in accuracy
in comparison to the minor absorption scenario, as the CR
signatures are more informative in this case. The subset of
data in this scenario consists of vegetation (classes L and
M), a tennis court (class C), wet sand (classes O and Q),
and composite rooftop materials (classes D and U). Figure
2 (bottom) shows the CI and CR mean signatures for these
classes. The 7 spectral species in each of the major and minor
absorption categories are relatively “pure” representatives of
their respective species. The last scenario, combined, consists
of all classes from both major and minor absorption scenarios.
We expect to see notable performance gains with the dCICR

measure in this case, as both the CI and CR signatures provide
information to distinguish between classes.

We present results using a minimum distance to class means
(MinDist) classifier with 5-fold random stratified sampling,
using 50% for training and the remaining 50% for testing.
We calculate α by maximizing S(α) as described in Section
III. We compare this α value to the αLS value obtained by
line search (LS) on a uniformly spaced range of 100 points,
αLS ∈ (0, 1), which yields the highest classification accuracy.
We calculate classification accuracy according to accuracy =
(# of True Positives)/(# of Samples) and we report accuracy
on test data only. Accuracies produced via line search are an
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Fig. 2. Top: Mean CI and CR signatures for minor absorption classes. Top
inset: detail view of minor absorption signatures, wavelengths 1.5-2.5µm.
Bottom: Mean CI and CR signatures for major absorption classes. The large
disconnected regions near 1.3-1.5 and 1.7-2.0 µm consist of bands removed
due to water saturation. CI signatures are scaled by their L2 norms to
compensate for varying illumination conditions.

approximate upper bound on achievable accuracy. We choose
the regularization parameter λ for each scenario on a hold-out
set comprising 50 samples per class, which is not included
in the training/testing samples. For our data, we select the λ
with the best classification accuracy on the hold-out set from
10 uniformly spaced values in [0.001,0.1]. We chose this range
because smaller λ values tended to yield ill-posed solutions,
and larger values did not improve classification accuracy in
any of the three scenarios – regardless of α. We calculate
λ once for each of the minor, major and combined scenarios,
and use the same value for each cross-validation fold. We also
reject any λ values which produce solutions to M−1

W MB with
no positive eigenvalues, as such λ yield rank-deficient M�

w

(Equation 9).
Figure 3 gives the overall and per-class classification accura-

cies for α ∈ [0, 1]. The vertical magenta dashed line marks the
α value determined by maximizing Equation 4, and the black
vertical line gives αLS. Table I provides average accuracies
for each measure. In all three scenarios, small alpha values
(< 0.3) yield the highest classification accuracies (though we
do not constrain the search to this range). This indicates that,
for this dataset, CI signatures are more robust descriptors than
CR signatures for classification. This is particularly obvious
in the minor absorption scenario (Figure 3, top), where the
CR signatures lack discriminative features. Here, classification
accuracy using dCI is close to dCICR, and both our method and
the line search produce α values near zero.

For major absorption classes (Figure 3, middle), note that
the rate of decrease in classification accuracy is less dramatic
as α approaches one, by comparison to the minor (top) and
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combined (bottom) absorption scenarios. This indicates that
the CR signatures provide additional discriminating informa-
tion, which increases the α values yielding higher classifica-
tion accuracy. Correspondingly, the maximum separation also
shifts towards larger α values. While α and αLS differ the most
in this scenario, their corresponding classification accuracies
are not far apart (97.4% vs. 98.4%). Both are improvements
over the baseline dCI accuracy (1.5% and 2.5% relative im-
provements for our LDA-based α and αLS, respectively).

In the combined scenario (Figure 3, bottom), due to poten-
tially increased class confusion between signatures (compared
to the other two scenarios), locating a compromise between
the CI and CR terms is challenging. As we see in Figure 3,
the mean classification accuracy for this scenario generally
falls between the mean accuracies of the minor and major
absorption scenarios. However, we see the most significant
improvement, over the baseline dCI method, in classification
accuracy in this scenario (4.5%, by comparison of the thick
black line to the horizontal red dashed line in Figure 3,
bottom), vs. the other two scenarios, since both the CI and
CR representations provide complementary information to
discriminate the classes. This is noteworthy given that the
CI and CR classification accuracies in the combined scenario
are close to those of the minor absorption scenario (88.5%
vs. 88.2% and 66.1% vs. 66.4%, in the combined vs. minor
scenarios, respectively), yet the relative improvement in the
minor scenario is, not surprisingly, lower 1.7%.

Fig. 3. α vs. per-class dCICR classification accuracy for minor (top), major
(middle) and combined (bottom) absorption classes. Colored lines indicate
per-class accuracies, and the black solid line gives the overall classification
accuracy. The black vertical bar gives αLS, and the magenta vertical bar
gives α. The horizontal lines give the CI (red, α = 0) and CR (blue,
α = 1) classification accuracies. Because the CI representation is generally
more informative than CR, α values tend towards zero, but larger values
occur in cases when the CR representation provides additional discrimination
information (as in the major and combined absorption class scenarios).

Figure 4 characterizes the relationship between the number
of labeled samples available for training vs. classification
accuracy. As before, classification accuracy is measured over
5 stratified 50/50 splits into training/test data. In every case,

dCI dCR dCICR (α± σα) dCICR (αLS ± σαLS )
Minor 88.5 66.1 90.1 (0.0510±0.0375) 90.4 (0.0485±0.0003)
Major 95.9 76.7 97.4 (0.1493±0.0041) 98.4 (0.0770±0.0195)
Combined 88.2 66.4 92.4 (0.0903±0.0006) 92.6 (0.0670±0.0057)

TABLE I
AVERAGE CLASSIFICATION ACCURACY OBTAINED WITH EACH OF THE dCI ,

dCR , dCICR MEASURES SHOWN IN FIGURE 3. MEAN AND STANDARD
DEVIATION (σ) OF α VALUES FOR dCICR MEASURES ARE GIVEN IN

PARENTHESES. THE MOST ACCURATE MEASURE IS GIVEN IN BOLD TEXT.

the dCICR-based classifiers match or outperform the dCI-based
classifier. Additionally, our LDA-based technique for calcu-
lating α performs comparably to brute force search when a
sufficient quantity (about 50 / class) of training samples are
available. We observe the most significant performance gains
of the three scenarios in the combined scenario, where the
dCICR measure can exploit absorption features to separate the
classes belonging to the major and minor absorption scenarios,
and also can capitalize on the absorption characteristics of
individual classes. dCR performs the worst in all three cases,
and is not shown in Figure 4 to emphasize the performance
of the better performing measures.
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Fig. 4. Classification accuracy vs. number of samples per class for minor
absorption (top), major absorption (middle) and combined (bottom) scenarios.
In each scenario, the LDA-based dCICR measure (magenta line) outperforms
the baseline dCI-based classifier (blue line), and with a sufficient number of
training samples (∼20-30, scenario dependant) achieves classification accu-
racy comparable to line search (red line). dCR-based classification accuracy not
shown above due to significantly lower accuracies (∼65-77%) in comparison
to the dCI and dCICR-based classifiers.

Determining α using our LDA-based method is significantly
less computationally expensive than via brute force search (i.e.,
αLS). Quantitatively, assuming N samples of dimensionality
D belonging to K classes, we first compute the continuum-
removed representation of each spectrum using our piecewise
linear continuum estimation procedure – an O(D) operation
per spectrum. Then, given the set of (precomputed) class
means, a MinDist classifier must compare each signature to
each class mean, an O(DNK) operation. Let A be the number
of values αLS can take in (0, 1) (in this work, we choose
A=100). Using brute force search, we apply the O(DNK)
MinDist classifier A times. With the LDA-based method,
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calculating the (symmetric) MB involves three O(DK) op-
erations and MW involves three O(DN ) operations, and
calculating the eigendecomposition of the (2 × 2) M−1

W MB

matrix can be performed in constant time. This amounts to
roughly an A-fold improvement in performance by the LDA-
based method over line search. Because A must be large
enough to adequately cover the weight parameter space, our
method is an order of magnitude faster than brute-force search.

V. DISCUSSION AND FUTURE WORK

As hyperspectral sensors improve in sensitivity and spectral
resolution, the choice of spectral similarity measure will play a
significant role in resolving subtle differences between classes.
We have shown in this work that with a small amount of
preprocessing, we can improve classification performance over
traditional, task-agnostic similarity measures using our adap-
tive, hyperspectral domain-specific similarity measure. We also
provided an efficient method to calculate the weight parameter
used in our similarity measure which yields classification
accuracies within 1% of brute-force search over the range of
possible weight values.

Leveraging techniques employed by spectroscopists (i.e.,
continuum removal) is a natural approach to characterize
spectral similarity. However, determining the best manner
in which to exploit this information is challenging. First,
numerous methods for continuum estimation and removal
exist, ranging from fitting piecewise linear functions [1] to
more involved techniques that exploit high-order derivatives of
spectral signatures [10]. Determining which method performs
best in terms of classification accuracy has not been widely
explored in the literature (to the best of our knowledge) and
is a subject of future work.

We experimented with other methods for learning the α
weighting in the CICR measure, but our initial experiments in
those directions produced mixed results. We believe an issue
with such methods (e.g., [11]) is that the learning problem
is transformed from a multiclass classification problem to a
binary classification problem where spectra from “similar”
vs. “dissimilar” classes are grouped into two meta-classes,
thereby discarding discrimination information with respect to
individual classes. We observed a similar issue with other
multiclass metric learning techniques in previous work [12].

When continuum removal detects spurious absorption fea-
tures L2-normalization may exacerbate noise. In such cases,
it may be advantageous to adopt alternative normalization
schemes to map the CI and CR signatures to a common
range, such as scaling signatures by their respective (CI
or CR) standard deviations. Using such a “global” scaling
factor, we would not accentuate noise on individual signatures.
However, this would not provide the same degree of contrast
between classes as L2 normalization provides. The tradeoffs
involved with these normalization schemes is a subject of
future investigation.

As mentioned in Section III, normalization of spectral
signatures plays a significant role in the performance of this
technique. In particular, scaling CR signatures by their L2

norms often improved the classification accuracy by giving
additional weight to discriminative absorption features. How-
ever, in some cases this normalization may not be desirable, for

example, if the CR signatures fail to capture the most relevant
absorptions, perhaps due to noise and/or poorly estimated
continua. Other normalization techniques such as scaling by
the within-class variances may be beneficial in such cases.
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