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Abstract

We extend the Structural Correspondence Learning (SCL) domain adaptation al-
gorithm of Blitzer et al. [4] to the realm of continuous signals. Given a set of
labeled examples belonging to a “source” domain, we select a set of unlabeled
examples in a related “target” domain that play similar roles in both domains.
Using these “pivot samples,” we map both domains into a common feature space,
allowing us to adapt a classifier trained on source examples to classify target exam-
ples. We show that when between-class distances are relatively preserved across
domains, we can automatically select target pivots to bring the domains into cor-
respondence.

1 Structural Correspondence Learning for Continuous Feature Spaces

We extend the Structural Correspondence Learning (SCL) algorithm of Blitzer et al. [4] to contin-
uous signals. SCL is a domain adaptation technique which creates a mapping between a “source”
domain consisting of labeled examples, and an unlabeled “target” domain using a set of “pivot fea-
tures” common to both domains. In text classification scenarios, these consist of terms (words) that
serve similar roles in both domains, so that the role of other features can be inferred by correlation.
We extend this concept to continuous domains where the objects we classify are continuous-valued
functions, making SCL applicable to data such as time series or electromagnetic spectral signatures.

Recent work by Balcan et al. [1] provides an elegant method to define a correspondence mapping
between continuous feature spaces. They illustrated that designing a good feature space is similar to
designing a good kernel function, and under certain conditions, a kernel which approximately pre-
serves the margin of a max-margin separator can be constructed using a set of unlabeled samples. By
projecting samples into a space defined by (distances to) the unlabeled samples, one can potentially
harness the power of a high-dimensional kernel mapping in this lower-dimensional feature space.
In a similar vein, we define our correspondence mapping using distances to canonical samples, or
pivot samples. These distances become the pivot features we use to reconcile differences between
the source and target domains.

Determining a mapping between domains is closely related to the topic of manifold alignment. Most
manifold alignment algorithms assume knowledge of the target domain in the form of paired (source
to target) correspondences [11], [13] or a number of labeled target examples [8], to define a transfor-
mation that reconciles the feature spaces, but recent work (e.g., [12]) determines the correspondence
mapping automatically by matching local geometric properties across feature spaces.

This work presents Multiclass Continuous Correspondence Learning (MCCL): a domain adaptation
technique for high-dimensional continuous data. In previous work [5], [6], we demonstrated the
feasibility of a similar domain adaptation technique for continous data — specifically, hyperspectral
imagery. In this work, we show that by exploiting structured relationships between a diverse set of
source classes, we can automatically select a set of pivot samples to reconcile differences between
source and target domains.



1.1 Domain Adaptation and Classification with MCCL

We assume we have N labeled examples (X, Y) drawn from a source distribution D to train
a predictor to classify M unlabeled examples X7 drawn from a target distribution D7 (assumed
available at training time). The distributions share a set of classes with labels Y = {1,..., K}.
Without loss of generality we assume the samples x in both domains are F'-dimensional vectors,
where F' is the number of features. We use the following transformation to map a sample x to the
feature space defined by pivots p; € P (we hereafter refer to this feature space as the R-space).
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Algorithm 1 describes the Multiclass Continuous Correspondence Learning Algorithm (MCCL).
Given source pivots P°, we select target pivots P7 which best preserve the relative distance rela-
tionships between source pivots (Step 1). Next, we train a multiclass predictor using the transformed
source samples (Step 2), in order to classify the transformed target samples (Step 3). We evaluate

Algorithm 1 Multiclass Continuous Correspondence Learning (MCCL)

Input: source training data (X, Y ), target data X7, source pivots P*.
Output: predicted target labels Y7
1: Build target pivot set P7 from X7 by selecting best matching target pivot, p/ = x/ , for each
source pivot p; € P® according to £ = argmin || R(py, P®) — R(xT, P%)|, j € {1,..., M}
J

2: Train a multiclass predictor in the R-space p : R(x, P) — Y using R® = (R(x}, P%))}N .

3: return Prediction vector YT = (p(R(xI, PT)))M,, xI' € XT.

the quality of the correspondence mapping defined by the pivot set using a technique inspired by the
H-divergence [3]. The (empirical) H-divergence measures the difference between two distributions
by finding a classifier which separates samples drawn from either. Low H-divergence scores indicate
we cannot distinguish between samples drawn from either domain, so we seek a set of pivots with
small average per-class H-divergence. We describe the Pivot Divergence (Pdiv) function below.

Algorithm 2 Pivot Divergence (Pdiv)

Input: pivot sets (P, PT), each of length Q = Zle Qr
Qutput: divergence score H.
1: for k =1to K do
2:  Define label vector y = ((71)%1, (1)%1) for pivot samples belonging to class k.
3:  Train binary predictor h : R(p, P) — {—1,1}.
4:  Calculate divergence between class k source and target pivots
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Hy, = 55- (Zfi’“l Z(h(pf, PS) = yi) + 309 1 Z(h(p!, PT) = yi))
5:return H =LK H,

2 Evaluation on Synthetic Data, Hyperspectral Imagery

We consider several classification contexts to evaluate the performance of the MCCL algorithm.
First, we calculate the baseline “within-domain” source (S) and target (T) classification accuracies.
The maximum of these provides an approximate upper bound on the best achievable accuracy. In the
naive class knowledge transfer context (ST), we simply train a classifier on the (whitened) source
data to classify the (whitened) target data, which gives a lower bound we expect to improve. Next,
we calculate accuracy using the R-space transform defined by @y pivots per class sampled from
labeled source and target data (R-S, R-T, and R-ST, respectively). This measures the change in
accuracy induced by the R-transform when labels are available in both domains. Last, we calculate
the accuracy using Algorithm 1 (R*-ST) which selects target pivots using labeled source data only.
In the R-space cases, we select the @, samples nearest to each class mean as the source pivots P~.
We classify samples using the multiclass (one-vs-one) Support Vector Machine implemented in the



LIBSVM package [7], with 5 fold cross-validation. We select slack parameter C via grid search
over {1072 ...,10%}.

Synthetic Data: We first provide an illustrative example on a synthetic dataset, shown in Figure |
(left two plots). Each class consists of 500 samples drawn from one of four 2D Gaussians. The
mean of each target Gaussian (bottom plot) is a randomly perturbed version of its corresponding
source mean (top plot). Diamond markers indicate the (), = 50 selected source/target pivots. On
the right we have the source (top, offset for clarity) and target (bottom) class means p7, ! in
the R-space R(u;, P), where P is the set of pivots in the corresponding space (pivots ordered by
class membership). Visually, the R-space class means appear better reconciled than in the original
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Figure 1: Left: 4 class synthetic source (top) and target (bottom) data. Right: source class means (top) and
target class means (bottom) in the R-space R(u;, P)

feature space, though not perfectly so due to the non-linear transformation between the two domains
(particularly classes 2 (cyan) and 3 (yellow)). Despite this, we see a significant improvement in
accuracy in the R-space cases (R-ST=0.95 and R*-ST=0.93) over the baseline (ST=0.88).

Hyperspectral Imagery: We next evaluate our algorithm on hyperspectral image data. Here we
address the task of classifying a set of mineralogical samples taken from one image using training
data from another image captured under different conditions — a problem highly relevant to global
hyperspectral mapping and analysis tasks. Our data consists of five mineralogical classes manually
labeled by an expert geologist from two images of the Cuprite mining district in Cuprite, NV. Image
Av97 was captured in June 19, 1997 by the AVIRIS instrument, consists of 512x 614 pixels, and was
studied in detail in [9]. Image Hypll was acquired on Feb. 06, 2011 by the Hyperion instrument
onboard the EO-1 satellite, and contains 1798 x779 pixels. Each pixel is a 29-dimensional vector
of image radiance values measured at wavelengths in the range 2.1029-2.3249;m. The domain
adaptation task is particularly challenging for these images, as many unique mineralogical signatures
appear in this region. We preprocess the images with atmospheric calibration (i.e., conversion from
spectral radiance to surface reflectance) and illumination normalization (i.e., scaling each pixel by
its L norm). The smallest image consists of over 300,000 pixels, so we also segment each image
using the technique described in [10]. We select the target pivots p/ € P from the set of means of
the resulting segments.

Identical classes appear differently in each image due to differences in sensor type, environmental
conditions, capture dates, and atmospheric calibration. Scaling each sample by its L? norm accounts
for some scale differences, and whitening filters further reconcile these scenes. Figure 2 shows the
whitened class means in each image. However, as we show in subsequent sections, these steps
alone are insufficient for robust class knowledge transfer between images. We consider two domain
adaptation scenarios. First we train a classifier using the Av97 image as the source data and test the
classifier on target data from the Hypl1 image. We refer to this scenario as “Av97=Hypl1.” In
the second scenario we use the Hypl1 data as the source, with Av97 as the target data. We refer
to this scenario as “Hypl1=-Av97.” Figure 3 gives classification accuracies and Pdiv scores with
respect to the number of pivots per class (). In both scenarios, we see significant improvements in
accuracy in the domain adaptation cases (R-ST and R*-ST) over the baseline (ST). Selecting pivots
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Figure 2: Whitened class means for Av97 (left) and Hyp11 (right) images. Sample counts for each class are as
follows: Calcite: 1076, Jarosite+Alunite: 55, Alunite: 336, Kaolinite: 382, Muscovite: 425.

using Algorithm 1 (R*-ST) yields comparable results to using labeled pivots (R-ST) for domain
adaptation. However, in the Av97=Hypl1 scenario, we see worse domain adaptation performance
along with a larger gap between the R-ST and R*-ST results. Recall that the mapping between
domains is defined by the source pivots, so if the classes are better separated in the target domain
then in the source (e.g. the Hypl1=-Av97 scenario), the mapping performs well. However, if the
target data is less separable than the source (e.g. the Av97=-Hyp11 scenario), then the source pivots
may not discriminate ambiguous target classes.
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Figure 3: Classification accuracies for contexts described in Section 2 (left two plots) and Pdiv scores vs.
pivots/class @ (right two plots) for Av97=-Hyp11 and Hyp11=-Av97 scenarios. Black diamonds indicate the
best Pdiv score for the R*-ST context yielding the classification accuracy in the left two plots.

For the Av97=-Hypl11 scenario, (J;; = 10 attains the minimum Pdiv value, where we also observe
the maximum R*-ST classification accuracy. Also, Pdiv increases with @), while the R*-ST accu-
racy remains relatively constant, indicating that additional pivots determined by the Av97 source
data do not improve domain adaptation. In the Hyp11=-Av97 scenario, while we see a gradual de-
crease in Pdiv for increasing Qi — with slight improvements in accuracy, the Av97 classes are well
separated for mid-range Q. values € {10,...,50}. For small Qj, we observed low accuracy in all
of R-S, R-T and R*-ST cases, indicating the pivot set is inadequate to describe the classification task.
We can filter such degenerate cases by ensuring that the R-space accuracy on the source data (R-S)
is approximately the same as in the original feature space (S) (an approach also described in [2]).
This allows us to define a lower limit on the number of pivots necessary to define a feature space ex-
pressive enough for domain adaptation. We note that accuracy on the within-domain cases (S, T) are
approximately equivalent to their corresponding R-space cases (R-S, R-T) when Q) is sufficiently
large (Q) > 10). We also note that when target labels are available for domain adaptation (R-ST),
we achieve relatively high accuracy even for small Q.

3 Conclusions and Future Work

In this paper, we provided an extension to structural correspondence learning in continuous domains
built upon our previous work in domain adaptation [5], [6], and provided a methodology to auto-
matically select pivot samples to reconcile differences between domains. We show empirically that
when between-class distances are preserved across domains, our automated pivot sample selection
technique performs competitively to the case when labeled target samples are available to define a
mapping between domains. In future work we will investigate the theoretical relationship between
the implicit kernel mapping described in [1] to the R-transform (Equation 1) in the contexts of mul-
ticlass classification and domain adaptation.
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