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Abstract—We present a technique for automatically labeling
segmented hyperspectral imagery with semantically meaningful
material labels. The technique compares the mean signatures of
each image segment to a spectral library of known materials, and
material labels are assigned to image segments according to the
most similar library entry. Similarity between spectral signatures
is evaluated using the CICR, similarity measure proposed in [1],
designed specifically for hyperspectral imagery. This measure
considers both the continuum-intact reflectance spectrum and
its continuum-removed representation. We provide a thorough
assessment of this measure by comparison to several commonly
used similarity measures on a well-studied Low Altitude AVIRIS
image of an urban area. We evaluate our results using both
information-theoretic techniques and visual validation of the
resulting spectral matches.

Index Terms—automatic labeling, material labeling, spectral
matching, AVIRIS, hyperspectral imagery, urban

I. INTRODUCTION

DENTIFYING surface materials is a fundamental goal of

employing airborne hyperspectral sensors. The high spec-
tral and spatial resolution of these sensors, along with many
recent advances in image processing techniques, has brought
fully automated material mapping close to reality. A sig-
nificant remaining step towards automated material mapping
is addressing the semantic gap between hyperspectral image
pixels and their material interpretations. Because hyperspectral
pixels are effectively unique material descriptors, it is often
possible to determine which materials hyperspectral pixels
represent by locating similar spectra in libraries of field or
lab measured spectra; a methodology has been practiced by
experts in spectroscopy for many years.

Spectral libraries such as those available from the USGS
[2] and NASA (e.g., RELAB [3], ASTER [4] and CRISM
[5]) have been used extensively by spectroscopists to interpret
terrestrial and planetary spectral data. Their use in automated
analysis, however, has been somewhat limited, because current
spectral libraries often do not capture the diverse variations and
types of spectral signatures that can be extracted from hyper-
spectral imagery. Another limiting factor is the computational
expense of comparing thousands/millions of hyperspectral
image pixels to each entry in a spectral library (which may,
itself, consist of thousands of signatures).

A promising method to reduce computational costs is to
summarize segments (clusters) of similar image pixels (spec-
tra) that capture the most relevant spectral variations in the
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image. Once an image is segmented according to spectral
properties of the pixels, we can compute mean signatures
(or other summary statistics) for each segment, which can be
subsequently compared to spectral library signatures.

In this work, we describe a methodology for assigning
semantically meaningful labels to segmented hyperspectral
image data through automated comparisons of cluster signa-
tures to field and lab measured spectra. In previous work, we
proposed a novel similarity measure for hyperspectral image
signatures that considers both the continuum-intact (hereafter
referred to as CI) reflectance spectrum in addition to its
continuum-removed (CR) representation [1]. In this paper, we
provide a more thorough assessment of this new measure by
comparison to several commonly used similarity measures on
a well-studied Low Altitude AVIRIS image. We evaluate the
measures using techniques proposed by Chang et al. in [6], and
through visual inspection of the resulting spectral matches.

This paper is organized as follows: in the next section, a
review of several topics related to automatic labeling and spec-
tral matching is presented. Next, we describe our automatic
labeling methodology, methods for preprocessing spectra and
evaluating spectral similarity, and techniques for evaluating
spectral similarity measure performance.. Section IV describes
the imagery and spectral library we analyze, along with our
automatic labeling results. Analysis of these results is provided
in section V, and further discussed in section VI. Finally, we
discuss conclusions and future work in section VII.

II. RELATED RESEARCH

Hyperspectral Image Segmentation: The goal of an image seg-
mentation algorithm is to partition an input image into subsets
of similar pixels. One input to this work is segmented hy-
perspectral imagery, therefore the quality of the segmentation
is very important. Due to the dimensionality and complexity
of hyperspectral data, segmentation is challenging task and a
subject of ongoing research in the remote sensing community.
Of the numerous approaches for segmenting hyperspectral
data, Self-Organizing Maps have performed demonstrably well
[7], [8], [9]. Also, recent approaches which have yielded
promising results are hierarchical methods (e.g [10], [11],
and [12]), and combining spectral and spatial properties in
clustering (for instance, [13], [14] and [15]).

Spectral Similarity Measures: Characterizing spectra in terms
of their shape and the positions/widths of their absorp-
tion bands is crucial in measuring spectral similarity. Many
hyperspectral analysis techniques assess similarity using
a function such as the Euclidean distance (ED), Cross-
Correlation (CCSM) [16], symmetrized Kullback-Leibler di-



vergence (Spectral Information Divergence (SID)) [6], or
cosine similarity (Spectral Angle Mapper) [17]). Several tech-
niques measure similarity between CR spectra (e.g., Spectral
Feature Fitting [18], Cross-Correlation Spectral Matching for
Continuum Removed signatures (CCSM-CR) [19]), but these
are similarly applicable to CI spectra.

Despite the considerable utility of these measures (which
have been compared in several previous works, such as [20],
[21], and [22]), they all consider either CI reflectance signa-
tures, or CR absorption band characteristics — but not both.
If CI signatures are used, differences in absorption band char-
acteristics are often poorly captured because the continuum
shape tends to dominate similarity comparisons. Alternatively,
using CR spectra alone emphasizes differences in absorption
bands, but discards essential continuum information.

Automated Hyperspectral Image Analysis with Spectral Li-
braries: Utilizing established lab or field-measured spectral
libraries in automated analyses has only been explored in a
few instances in the hyperspectral imaging domain. One of
the seminal works in this area is the Tetracorder algorithm,
developed by Clark et al. [18]. The Tetracorder compares
continuum removed image signatures to library signatures by
calculating a modified least squares fit between the signatures,
constrained by the reflectance levels, continuum slopes, and
presence/absence of ancillary features of interest in the spectra.
Spectral matches are filtered by a rule-based system that
searches for “diagnostic features” defined by spectroscopists.

Wagstaff et al. leverage spectral libraries in semi-supervised
clustering of hyperspectral imagery [23]. Here, library signa-
tures are used to define initial cluster centroids in K-means
clustering. By explicitly “seeding” clusters with signatures
from known species, the converged clusters often carry more
definite interpretations, while also achieving faster conver-
gence in clustering (up to a 40% decrease in convergence time,
when compared to randomly initialized cluster centroids).

Keshava [24] utilizes spectral libraries in the context of
hyperspectral band selection for material identification. Here,
band selection is framed as an optimization problem where
a set of categorized reference spectra are used to select
the bands which maximize the angular separation (using the
SAM similarity function) between categories. Classification
accuracies produced using only the selected bands are within
5% of accuracies employing all spectral bands.

While spectral libraries have not been employed exten-
sively to automatically match hyperspectral image signatures,
their use in automated matching techniques has been more
widely explored in mass spectrometry. This methodology dates
back to as early as 1971 when Hertz et al. [25] developed
methods to autonomously evaluate similarities between a set
of known mass spectral signatures to spectra collected by
a gas chromatograph. Analogous techniques are still used
today (for example, in [26] and [27]), and while the measures
for evaluating similarity between mass spectra differ greatly
from those for hyperspectral signatures, the spectral matching
methodology is essentially the same (a review of spectral
matching topics for mass spectroscopy is given in [28]).

III. METHODOLOGY OF AUTOMATIC MATERIAL
LABELING

After a hyperspectral image has been segmented, each
segment consists of the set of pixels “most similar” to one
another, according to the selected similarity measure. Because
the pixels (the spectra) in each segment are similar, we can
summarize each segment by its mean spectral signature (we
will use “mean signature” and “cluster signature” interchange-
ably). To assign a material label to a segment, we calculate
the similarity between its mean signature and signatures in
a library of (lab or field-measured) signatures with known
material labels. We assume that each spectral signature in the
library is a unique descriptor for the material it represents.
Therefore, if the similarity measure yields a high similarity
score for a given cluster signature and a particular library
signature, we can assign the material label from the library
signature to the members (pixels) of the given cluster.

Because we assign material labels based on similarity scores
between cluster signatures (spectral properties of unknown
materials) and library signatures (spectral properties of known
materials), the validity of the label assignments depends
on two assumptions: (1) cluster/library signatures adequately
characterize their constituent materials, and (2) the chosen
similarity measure can accurately quantify relationships be-
tween signatures. If either of these assumptions break down,
the resulting label assignments will be unreliable.

Additionally, due to the automated nature of the technique,
the quality of the labeling is constrained by the material
metadata available in the spectral library. This can be prob-
lematic because some library entries have object labels, rather
than material labels. By “object” we mean some collection
of one or more materials collectively described as a high
level semantic concept (for instance, a tennis court). We must
distinguish between material vs. object identification because
we often cannot infer objects from material properties without
additional context. For instance, we cannot differentiate be-
tween an asphalt rooftop and an asphalt road by their spectral
signatures alone. Conversely, if we are only provided an object
label, we cannot (automatically) infer the material composition
of that object. A higher level of semantic context is necessary
to determine the relationship between identified materials and
the object(s) to which they belong, which is beyond the scope
of this paper. In this work we focus on identification of
materials as determined by their spectral properties.

A. Signature Normalization

In order to compare a cluster signature to a library sig-
nature, it is necessary that both signatures have the same
spectral range and resolution. We assume atmospheric effects
are accounted for by converting image radiance to surface
reflectance using appropriate atmospheric correction methods.
After atmospheric correction is performed, we still must
account for scaling effects caused by illumination conditions.
To mitigate illumination effects, we scale each cluster and
library signature by its Euclidean norm. This scales signatures
to unit length while preserving spectral angles, but discards



geometric albedo, which can be recovered in post-processing
by selecting from multiple same-spectrum matches.

B. Combining Spectral Representations: CICR;

We measure spectral similarity using the CICR, distance
proposed in [1], which accounts for differences in both con-
tinuum shape and absorption bands. CICR, is defined as:
d(Si, Sj) i ad(CR(Si), CR(Sj))

ver UCR
where s; and s; are two CI spectral signatures, d(-,-) is a
distance measure, « is a weighting factor that determines the
contribution of the CR term, vy and vog are scaling factors
(described below). The output of the CR(-) function is a vector
with components in the range [0, 1], where values of one lie
on the estimated continuum and values less than one indicate
the depth of absorptions relative to the estimated continuum.
Scaling factors voy and vopr are the variances of all pairwise
distances between library and cluster spectra, for CI and CR
versions, respectively. Scaling each term by its respective
variance is necessary since d(-,-) and d(CR(-),CR(-)) are
not (in general) in the same range. For as straightforward
comparison to earlier works as possible, we set a = 1.0. In
this work, d(-, -) will be either the Euclidean distance (ED) or
Spectral Information Divergence (SID).

CICRd(Si, Sj) = (1)

C. Comparing Spectral Similarity Measures

We discuss evaluation measures proposed by Chang [6],
which characterize the performance of a distance measure
d(-,-): the Spectral Discriminatory Probability (hereafter re-
ferred to as SDP?), Spectral Discriminatory Entropy (SDE%),
and the Power of Spectral Discrimination (PWd).

The Spectral Discriminatory Probability calculates the like-
lihood that a cluster signature ¢ will be identified as library
signature 1y using distance measure d(-, ).
_dleh)
Z;‘nzl d(c, lj)
given a set of m library signatures L¢ = {l1,...,1n}. A
small SDP? value indicates the probability of distinguishing
the cluster signature and library signature is low, within
the context of the given library. Thus, the “best” matches,
according to measure d(-, -), are those with the smallest SDp?
values. In this work, we inspect the best three (m = 3)
matches to balance the amount of manual validation while
providing a satisfactory demonstration of the technique. We do
not threshold the spectral distances when selecting these three
matches, therefore we will get three candidates per signature,
regardless of their similarity.

The Spectral Discriminatory Entropy quantifies the uncer-
tainty in identifying cluster signature ¢ amongst the library
matches in L°.

SDP%(c, Iy) = )

SDE%(c,L¢) = — > SDP%(c,1;) log SDP%(c,1;)  (3)

Jj=1
The SDE? takes values in the range 0 < SDE? < log %
reaching its maximum when all m distance values are equal.
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Fig. 1: The functional forms of the pw¢ (a) and SDE? (b) for
Le = {1, 12}, according to equations (3), (4).

(b) SDP(1;.15)

A smaller value indicates a better chance of identifying c
amongst the library signatures in L°.

The Power of Spectral Discrimination estimates the power,
for a given distance measure d(-,-), of distinguishing library
signatures {l;,1;} € L€ from one another, with respect a
reference signature c, and is defined as:

B d(c,l;) d(c,l;)
PWi(c,I;,1;) = max{d(qu)’d(c,li)}

SDP?(c,L;) SDP’(c,1;)
xd 200 {G) DO 5)
SDP‘(c,1;)” SDP%(c, ;)

4)

PW? values near one indicate that the library signatures are
“indistinguishable” with respect to cluster signature c. For
each cluster signature c, we calculate the mean Power of
Spectral Discrimination for the corresponding m best library
matches. The mean PW< is defined as:

PWI(e, L) = — 3" 3" PWie L) (6

m(m — 1) i=1j=i+1

Both the PW? and SDE? estimate the uncertainty in distin-
guishing cluster signatures from library signatures. In fact, the
PW? and SDE? produce rankings that are order isomorphic,
ie., given a set of distances between library and cluster
signatures, the ordering produced by ranking the distances by
the PW is equivalent to the ranking generated by the —SDE“.
Fig. 1 shows the functional behavior of the PW< and SDE? for
m = 2. Both the PW? and —SDE? are convex functions with
minima at the same location (%, specifically). Thus, both are
monotonically decreasing before, and monotonically increas-
ing after that location, and are therefore order isomorphic.
__This isomorphism also holds for m > 2. In this case, the
PW? is used (Eq. 6). Clearly, when m = 2, the PW? is
a convex function (as illustrated in Fig. 1). Since the sum
of convex functions is convex, PW? is also convex, with
minimum at % (when all outcomes are equiprobable) with
value 1. Because entropy is a concave function, —SDE? is a
convex function, with minimum similarly attained when all
outcomes are equiprobable (at value log %n). Once again, we
have two convex functions with minima at the same location,
both monotonically decreasing (increasing) before (after) the
minimum. Thus, the order isomorphism holds when m > 2.

Given a set of similarity values, the PW? is better suited to
discriminate values at the extreme ends of the distribution,
whereas the SDE? gives better separation across the mid-
range. However, both measures produce precisely the same
ordering of the similarity values, and thus, we focus on only
the PW in this work.



The mean PW? for library signatures in L€ characterizes
how “tightly packed” the distances are between the library
signatures and the cluster signature c. Intuitively, we want
this value to approach 1 for similar signatures, and to be large
for dissimilar signatures. But the PW? may become skewed if
distances between c and its best matching library signatures
(L®) are relatively far apart (as demonstrated in section V).
This often indicates that a representative signature does not
exist in the spectral library, since at least one of the m matches
may be a different spectral species than the other matches.

Additionally, the PW? is sensitive to spectral representation,
and in many cases does not capture visually strong matches,
particularly with the CR; measures (see section V-A). To
address this issue, we visually inspect the top m library
matches for each cluster signature c, obtained using ED and
SID. We assign a “visual score” (“VS” in Table I) to each
lx € L€ in the range of [0, 3], based on the overall spectral
shape and absorption band positions/widths. A visual score of
zero indicates poor quality for all m matches. A score of one
indicates the majority (but not all) of the m matches are of
poor quality, while a score of two indicates the majority of
the matches are of good quality. Finally, if all m signatures
strongly match the cluster signature, we assign a score of
three. Because these scores are subjective, multiple observers
are necessary to corroborate them confidently. In this work,
the matches produced by the CI;, CR; and CICR,; measures
have been judged by four independent observers. Additionally,
each observer has assigned visual scores to 210 CICRgp
vs. CICRgp spectral matches using a web-based form, and
we have observed similar trends in the per-user rankings, in
comparison to the visual scores provided in Table I.

We assess significance of comparisons between similarity
measures using the Wilcoxon Signed-Rank Test (WSRT) [29].
The WSRT is a non-parametric statistical hypothesis test for
paired measurements (similarity values) on a single sample
(cluster signature). Three quantities define the WSRT: the
number of trials performed, N;, the sum of positive differ-
ences in paired measurements, W+, and the sum of negative
differences in paired measurements, W~ . Equal measurements
are handled by adding their mean to both W+ and W~.
The significance of the performance is based on N, and
max(W*, W~) [30]. Using the WSRT to test significance
of spectral similarity measure comparisons has several ad-
vantages. First, it makes no assumptions on the underlying
distribution of the measurements. Second, greater emphasis is
placed on larger differences in measurements than on smaller
ones. Third, because the statistic for the signed rank test is
resistant (i.e., unaffected by changes in a few observations),
outliers are naturally suppressed (if the number of outliers is
not particularly large with respect to the size of the sample).
For a detailed discussion on the WSRT, see [31].

IV. DATA AND CASE STUDY
A. AVIRIS Image of Ocean City, MD

We demonstrate our automatic labeling technique on an
urban hyperspectral image of Ocean City, MD [32]. This
image was acquired by a low-altitude AVIRIS flight on Nov

5, 1998, with spatial resolution of 4m/pixel. Data prepro-
cessing, segmentation, the resulting image clusters and their
signatures are presented in [33]. This image is an example
of the complexity in a real urban study, with many material
classes of interest, and additionally has a good segmentation,
with clusters that have been verified to correspond to known
objects and materials. In this paper, we use the segmentation
produced with a Self-Organizing Map (SOM) in [33]. The high
spatial and spectral resolution of AVIRIS imagery, along with
the sensitive segmentation technique allowed discrimination
of 35 clusters with varied characteristics including (very)
small, and spectrally similar ones. As verified from field
data, most of these clusters represent objects associated with
distinct material types. Examples of these are: water tower,
buildings, roads, boardwalks, parking lots, mini golf course,
coast guard lookout tower, and landscape units. However, for
some clusters which can be recognized on the functional level
(i.e., tennis court), we do not have a corresponding material
identification. Discontinuities in the spectra, seen in all spectral
plots in the following discussions, are due to the removal of
saturated atmospheric water vapor bands. We also observe a
characteristic dip near 1.96um, which may be due to imperfect
removal of saturated water vapor bands, but may also occur
due to shadow effects (which are common in urban areas) or
multiple reflections caused by vegetation.

B. Spectral Library of Urban Materials

The spectral library used in our spectral matching procedure

consists of 1250 spectral signatures from three sources:

o 1164 field-measured spectra of mostly urban materials
acquired in 1075 wavelengths in the 0.35 to 2.4 ym range
(described in [34])

e 17 lab-measured vegetation spectra from the USGS
splibO6a spectral library [2]

e 21 AVIRIS image spectra (mostly vegetation and soil
types) from training regions described in [35]

All library signatures are tagged with metadata indicating
the objects measured, and most of the entries include a
corresponding material label. Library signatures are convolved
to appropriate AVIRIS wavelengths. We exclude wavelengths
outside of the range [0.42, 2.39] um due to low signal to noise
ratios in some of the library signatures, and exclude bands
removed from the Ocean City image. The remaining 165 of
the original 224 AVIRIS bands are used for spectral matching.

V. EVALUATION OF SPECTRAL MATCHING AND
AUTOMATIC LABELING ON OCEAN CITY CLUSTERS

A. Spectral Matching Performance

Table I gives the set of all visual scores for the matches
of the Ocean City clusters, along with summary statistics for
the visual and PW? scores for all cluster signatures (“(All)”
in Table I) and signatures which are adequately represented
in the library (“(Selected)” in Table I). Since precise material
interpretations are not known for all clusters, we make the
simplifying assumption that if the mean visual score (for all
measures) for a cluster signature is zero, then that signature
does not have a representative library signature. From Table I,



we see that clusters with mean visual scores equalling zero
include P, S, X, a, and c. C, F and d are also excluded
because they could not be interpreted with adequate confidence
(C is a green tennis court shown in Fig. 3, discussed below, F
consists of street/sidewalk materials, and d is likely a mixture
of water and nearby building materials).

While the best possible PW? score is 1, high PW? scores do
not necessarily indicate a measure is performing poorly. It may
suggest the average of the top m matches is skewed because
the similarity values are on varying scales. This is evident
in Fig. 2, where PW? scores for each cluster are provided.
Of particular interest are the atypical scores for signatures IM
(vegetation) and, to a lesser degree, T (asphalt) and Y (sand).
Table II gives similarity and pairwise PW? scores for the best
three matches for signature M. In this case (similarly with
signatures T and Y), a single similarity score is relatively
distant from the remaining two scores, resulting in a relatively
high PW? value. Note that each similarity measure returns
a different set of library matches, yet we observe the same
effect. In fact, the pw¢ may be used to indicate the library
has less than m suitable match candidates.

In terms of visual scores, matches using the CICR; mea-
sures score higher than matches made with their CI; and
CR counterparts, with significant improvements over the CR,
measures. It may seem counter-intuitive that simply including
a CR term in the spectral similarity measure will improve
spectral matching performance, considering the poor perfor-
mance of the CR; measures, but such performance gains are
actually quite easy to explain: CI; measures produce spectral
matches that correspond well in terms of spectral shape, but
fail to capture characteristic absorption features. Conversely,
using CR spectra alone will often yield matches that differ
greatly in spectral shape. Fig. 3 compares the CI; and CICR,
spectral matching results for Ocean City cluster C. The pixels
in this cluster belong to a green tennis court, and while we
do not have ground truth data on the material composition of
this signature, based on the character of the spectrum, it is
probably composed of asphalt material (and green pigment).
The signature has several significant absorptions at ~0.45,
0.64 and 2.22 pm that are captured by both CICR; measures,
but poorly captured by CI; measures. The CICR; matches
are not only more visually agreeable, but better represent
spectroscopic similarities between signatures. Fig. 4 gives the
CR, matches for cluster signature E (a metal rooftop). These
signatures have nearly indistinguishable CR representations,
but differ significantly in terms of continuua, resulting in
unsatisfactory matches with the CR; measures. Even the best
match differs significantly at the shorter wavelengths, due to
diffusion effects commonly observed in metallic materials.

Another example where the pw¢ may not reliably measure
similarity measure performance can be given through a case
of spectral match described by Van der Meer in [20], Fig. 7.
In this work, he concludes that the SID is more discriminatory
than ED based on analysis of a synthetic data set consisting
of 601-band field-measured spectra, and on AVIRIS imagery
consisting of 50 bands in the 2.0 to 2.5 pm range, for material
signatures montmorillonite (mont), kaolinite (kaol), quartz and

alunite (alun). While we do see (visually) a slight improvement
over the ED when matching the Ocean City CI signatures, the
SID performance is worse than the ED with the CR; measures,
and nearly equivalent with the CICR; measures. Furthermore,
in terms of PW¢ scores, we see that the SID-based measures
appear less discriminatory than Clgp, CRgp, and CICRgp.
The previous conclusion that the SID is a better measure
is based partly on the ED vs. SID PW? values for alun-
kaol, alun-mont, and kaol-mont, with quartz as the reference
signature. However, this is a somewhat pathological case for
the Euclidean Distance (particularly for the AVIRIS signatures
given in [20], Fig. 7). On further inspection of the AVIRIS
signatures, the quartz reference signature (a signature lacking
significant absorption features in the selected wavelengths)
will yield high PW? scores in comparison to kaol and alun
signatures (both of which are approximately bisected by the
quartz signature) and the mont. signature (which is similar
to the quartz signature, but darker). Consider the following:
Let the sum of the polygon areas defined by the upper and
lower portions of the alun signature bisected by the quartz
signature be A, 4, and let A, be the summed area of the
polygons defined by the same bisector (quartz) with the kaol
signature. Next, let A,, , be the area defined by the polygon
with boundaries defined by the mont and quartz signatures. It
is trivial to show that if A, , = Aj 4 then the alun-quartz and
kaol-quartz Euclidean distances are equal. If A,, , also has
the same area, then these three signatures are equidistant from
the quartz signature. Granted, for the signatures in [20], Fig.
7, these areas are not precisely equal, but they do show strong
similarities which would result in similar Euclidean distances.

Table III gives the WSRT p-scores for the PW? for each
similarity measure, evaluated on the 35 SOM clusters. Values
near 1.0 (bold) indicate low confidence in statistical signifi-
cance. The scores indicate the distributions of CR,; and CICR,
similarity values differ, and therefore should not be (directly)
compared. The p-scores are also relatively high between Cl;
and CR; measures. These findings are not surprising, since
spectra that are very different in terms of continuum shape can
be identical after continuum removal (see signatures h and i in
Fig. 6, for instance). Because similar signatures produce PW¢
scores near 1.0, the CR; measures appear more discriminatory
than the other measures, which is contrary to our findings in
Figures 2, 3, and 4.

B. Automatic Labeling of the Ocean City Image

We evaluate the performance of the automatic labeling
procedure by categorizing the spectral library into ten distinct
material groups (loosely based on the taxonomy of urban
materials given in [34]). We group materials for convenience
in these groups: Concrete materials, Asphalts, Composites
(which largely consist of shingle materials), Metals, Vege-
tation, Coatings (i.e., paint), miscellaneous roofing materials
(e.g., tile and wood shingles), Soil/Dirt, Water, and “Other”
(“Other” refers to library signatures for which material in-
formation is not provided. In our library, this includes only
tennis and basketball court signatures). We select the best
match produced by the CICRgp measure (which yielded the
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TABLE I: Visual scores
(indicated by italics) are

and averages for Ocean City SOM clusters. We
not represented in the library. Average scores are given for all clusters (All) and clusters represented

assume clusters with average visual scores of zero

in the library (Selected). The best scores are given in bold text, and the worst scores are underlined. CICR; measures generally
outperform both CI; and CR; measures. Visual scores are in the range [0,3] (0 = worst match, 3 = best match) and pw¢
scores are in the range [1,00] (1.0 = indistinguishable w.r.t. the cluster signature).
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Fig. 2: Top: PW? scores for each cluster signature according to
the Clgp (solid line, circle marker), CRgp (dashed line, square
marker), and CICRgp (dotted line, diamond marker) measures
(m=3). Bottom: PW? scores for each cluster signature using
the Clgyp (solid line, circle marker), CRgyp (dashed line, square
marker), and CICRg;p (dotted line, diamond marker) measures.
On average, ED-based measures yield better PW? scores than
SID-based measures. Cluster M (similarity scores given in
table II) is the most spectrally ambiguous according to the
employed measures.

best overall matching performance experimentally), and if the
material group of the matching library signature corresponds
well to the material group of the cluster signature, we consider
the label assignment a success. For some cases, determining
this correspondence requires the translation of an object label
(for instance, “rooftop”) to a material group (“‘asphalt”) (based
on manual inspection of the cluster signature and expert
interpretation), since the expert interpretations are sometimes
given on the object, rather than on the material level.

Of the 25 clusters with adequate library representation, 21
are successfully labeled using the CICRgp measure. These
21 clusters comprise 67.6% of the image pixels with known
material labels available in the library. The automatic labeling

dé,-) M, 13 M, 12 M, 13
Clgp 27.097 51.683 51.683
(shaded concrete)| (green paint) (grass)
CRgp 94.866 137.969 138.628
(grass) (tall grass) (gray shingle)
CICRgp 165.857 217.640 222.888
(grass) (shaded concrete)| (sage brush)
Clsmp 0.187 0.5817 0.610
(shaded concrete)| (green paint) (green paint)
CRsip 0.052 0.107 0.110
(grass) (palm tree) (green paint)
CICRg1p 0.309 0.793 0.844
(shaded concrete)| (green paint) (green paint)
PWIC, ) [ Ml M, 11,15 M, 12,13
Clgp 1.907 1.954 1.025
CRgp 1.454 1.461 1.004
CICRgp 1.312 1.343 1.024
Clsmp 3.114 3.266 1.049
CRsip 2.026 2.080 1.026
CICRgp 2.565 2.731 1.065

TABLE II: Similarity and PW? values for cluster signature M.
Significantly higher PW¢ scores are due to spectral ambiguity
between cluster signature M and library signatures 1z and 13
(bottom, bold), combined with a strong match to 1.

Clgp CRgp CICRgp | Clsip CRsip
CRgp 0.1542
CICRgp | 0.0885 0.7064
Clsip 0.0000 0.0007 0.0001
CRsip 0.0200 0.0034 0.0004 0.1957
CICRgyp | 0.0797 0.0238 0.0036 0.0769 0.6465

TABLE III: WSRT-based p-values for the PW? using Cl4, CRy
and CICR, similarity measures for the 35 Ocean City SOM
cluster signatures. Significantly higher p-values between CI
and CR-based similarity measures indicate that the similarity
values produced by these measures do not follow the same
distribution, and should not be compared directly.

results for each Ocean City cluster using the CICRgp measure
are given in Fig. 5. Expert interpretations of clusters are given
in plain text (column 2), and the CICRgp library matches are
given in colored text (column 3). If the match is considered
a success (according to our library categorization), the text
is colored green, while mismatches are colored red. Clusters
without a clear expert interpretation for their materials are
displayed in black text. Clusters with an asterisk by the expert
interpretation (in column 2) lack representative material signa-
tures in the spectral library; therefore these matches should be
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Fig. 3: Top: Best three matches for cluster C using Clgp, Clsip, CICRgp and CICRgp measures. Bottom: Corresponding CR
spectra. Using CI signatures alone results in poor matches of absorption bands (particularly at the shorter wavelengths). The
CICR, measure can exploit differences in absorption band characteristics, and thus, achieves improved matching performance.
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Fig. 4: Top: Best three matches for cluster E using CRgp, CRgip, CICRgp and CICRgp measures. Bottom: Corresponding CR

spectra. Due to the fact that the CR representation discards information on the shape of the continuum in favor of absorption
band characteristics, spectral matching with CRgp and CRgyp is poor. The matches using the CICR; measure yield improved
matches since both the continuum and the absorption features are considered.

disregarded. Selected spectral matches, grouped according to
their best matching library material label, are given in Figures
6,7, 8, 9 and 10. Even within these categories, there are often
significant differences in spectral shape for similar materials,
but since our library is sufficiently diverse, we find relevant
matches in almost all cases.

Not surprisingly, including CR signatures does not improve
discrimination between materials without significant absorp-
tion features. Fig. 6 gives the Clgp and CICRgp matches for
several asphalt cluster signatures. The best library matches
using both measures are the same, with only slight changes in
the ranking order. Also, visual scores (in Table I) for many of
the asphalt (h, i, T) and composite (G, I) signatures remain
the same for both the CI; and CICR; measures.

Two of the concrete matches are of particular interest. First,
cluster signature L (Fig. 7) is matched to a “shaded concrete”
library signature. This library signature is described in detail
in [34]), and is an example of an “intimate” mixture [36] of
concrete and a tree canopy. The mixture of the flat concrete
library signature does not cause significant perturbation of the
vegetation library signature and thus appears representative of

vegetation, and therefore, matches well to cluster signature L
(trees). The other concrete signature, U, corresponds well to
several gray/dark gray-colored rooftop material signatures. Ac-
cording to recent aerial photographs, the smaller U signature
(Fig. 5, right image) is a viewing tower, with a small enclosed
building on top, that likely is composed of a concrete roof
and concrete base. The larger U signature (Fig. 5, left image)
appears to contain concrete roof tiles. Also, the match to the
gravel rooftop is expected since concrete materials generally
consist of a mixture of cement, gravel and water.

VI. DISCUSSION
A. Spectral Representation: CI vs. CR

While absorption characteristics are of great importance in
identifying materials from spectral signatures, using the CR
representation alone in spectral matching is unreliable since
continuum shape information is ignored. Furthermore, the CR
signatures are only useful in discriminating spectral signatures
if the signatures have significant absorption features. Many
urban materials such as concrete and asphalt often do not have
such features, so the performance of CR; measures will be
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Fig. 5: Automatic labeling results for all Ocean City cluster signatures. Cluster interpretations (from field knowledge) are given
in black text (column 2) and the corresponding best match using the CICRgp measure is given in column 3 (colored text).
Cluster interpretations marked with an asterisk do not have representative material signatures in the spectral library, and are
not included in the “Selected” measurements in Table I. Matches in green text (in column 3) indicate that the material of the
best library match corresponds well to the expert interpretation, red text indicates a mismatch, and black text indicates that the
material composition for the cluster signature is unknown. Labels are determined on the basis of the spectral shape similarities.
Spectral matches are discussed in detail in figures 6, 7, 8 9 and 10.

poor, while the performance of the CI; and CICR,; measures
will be approximately the same on such material signatures.
The continuum removal technique employed may have a
significant effect on the CICR; measure. In this work, we
approximate the continuum by first connecting a set of the
most significant local maxima in a spectral signature via
straight-line segments (this procedure is analogous to the tech-
nique described in [37]). This may lead to slight distortions
in the CR signatures, due to the piecewise linear nature of
the continuum approximation. A continuum approximation
method using higher-order basis functions (for instance, using
the technique described in [38]) may improve the continuum
approximation and subsequent matching performance.

B. Evaluating Material Mismatches

Sometimes translation between the expert interpretations of
image segments and the labels provided in the spectral library
is nontrivial. Fig 11 illustrates this issue. Here, the expert
interpretation of cluster C, “tennis court” material, matches
well to several of “wood shingle” library signatures, even
though several tennis court material signatures exist in the

library. Since the precise material composition of signature C
is unknown, and the library metadata, in this case, does not
provide a material label for the tennis court signatures, it is
difficult to assess the accuracy of this labeling. Here, determin-
ing the correct labeling for C requires additional contextual
information, since the wood shingle signatures are clearly
stronger matches than the tennis court signatures (both in terms
of spectral shape and absorption bands). These ambiguities are
best resolved by employing more diverse spectral libraries with
extensive metadata, complete with material descriptions.

C. Segmentation Sensitivity

The performance of our proposed labeling technique is
clearly dependent on the quality of the segmentation to be
labeled. Using a poor segmentation will result in poor spectral
matches (and subsequently, labels without clear meaning)
since cluster signatures would not accurately capture dis-
tinctions between spectral species. To demonstrate this, we
compare the SOM and ISODATA [39] segmentations of our
AVIRIS image discussed in [33]. The SOM clustering (as
mentioned in section IV-A) yielded 35 clusters, while ISO-
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Fig. 6: Top: CI and corresponding CR library matches for category “Asphalt” using the Clgp measure. Bottom: CI and

corresponding CR library matches for the same clusters using the CICRgp measure. Both measures yield nearly the same
matches due to the lack of prominent absorption features in these signatures.
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Fig. 7: CI and corresponding CR library matches for category
”Concrete” using CICRgp. Due to intimate mixing effects
caused by the shadow of a tree canopy on the concrete
material, the “shaded concrete” library signature has spectral
shape typical to a vegetation signature and closely matches
cluster signature L (grass).

DATA yielded 20 clusters. Both clusterings, and corresponding
cluster signatures, are discussed in detail in [33]. Note that
the cluster labels (colors) in these two segmentations are
not consistent with each other because reconciling clusters is
nontrivial or impossible since there is not a one-to-one (or
even a clean one-to-many) correspondence between the two
clusterings. In fact, clusters in the ISODATA segmentation
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Fig. 8: CI and corresponding CR spectra for category “Coat-
ings” using CICRgp. This cluster corresponds to a water tower,
painted light blue, for which the best match is a white paint

signature.

are very different from the clusters detected by by the SOM.
Fig. 12 illustrates the problem of using a poor segmentation
in spectral matching. In this case, ISODATA assigns pixels,
corresponding to a clearly recognizable building (SOM cluster
D in Fig. 5), into three separate clusters (K, L and M,
not to be confused with the SOM clusters with the same
labels), none of which represents the true signature of the
building. The ISODATA cluster map is not shown here, but the
signatures of ISODATA clusters K, L and M are compared to
SOM cluster D in Fig. 12. There are two related issues here:
(1) ISODATA fails to detect an area of a unique signature
clearly delineated by the SOM, and (2) a number of spectrally
similar materials correctly grouped together by the SOM
are incorrectly assigned to several quite different ISODATA
clusters. Consequently, these ISODATA clusters give no clear,
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Fig. 9: CI and corresponding CR library matches for category ”Composites” using CICRgp. As observed in [34], considerable
spectral confusion exists between dark asphalt road and composite shingle rooftop signatures (since the composite shingles
often have a strong asphalt component), so material matches such as those observed in signature G are expected. Signature a
(a building rooftop consisting of a mixture of metal alloy and aluminum, painted blue) is a mismatch due to both signatures
having dramatically different spectral shapes (which indicates that there is not a representative signature present in the library).
The material content of cluster signature V (mini golf/rooftop) is unknown, but the marked similarity to other asphalt signatures
suggests it may be dominated by asphalt as well.
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Fig. 10: CI and corresponding CR spectra for category Fig. 11: Left plots: Tennis court cluster signature C matched
“Vegetation” using CICRgp. The second and third “green to library signatures of tennis court materials. Right plots:
paint” matches for cluster K are due to strong similarities Spectral matching results for signature C using CICRgp.
in absorption features common to vegetation species, as ob- Both CT and CR spectra of the tennis court better match sev-

served in the CR signatures. As a result of these similarities, eral library signatures of “shingle” materials in comparison

the measure would incorrectly label the vegetation spectra as to the tennis court library signatures.
green paint if the first match, “grass,” had not been present.
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Fig. 12: Left block: Library matches for ISODATA clusters K (comprising SOM clusters verified as shingle rooftops, roads
and parking areas, and a mini golf course), L (various rooftop materials) and M (various rooftop and road materials). Right:
Library matches for SOM cluster D (a shingled rooftop). In this case, pixels that are delineated well by the SOM cluster D
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or worse, misleading interpretations. Matches from a library signatures — may not represent the species at the locations of
— while they may be good matches to the mean cluster the incorrectly delineated ISODATA clusters.



VII. CONCLUSIONS AND FUTURE WORK

In this work, we demonstrated a technique for automated
labeling of segmented hyperspectral imagery using a library of
known material signatures. Labels derived by our proposed la-
beling technique are determined by the contents of the library,
the quality of the segmentation, and the similarity measure
used to compare spectral signatures. A similarity measure
designed specifically to characterize hyperspectral signatures
was evaluated and shown to outperform the Euclidean distance
and Spectral Information Divergence measures in matching
hyperspectral signatures. This measure was used to select
material labels from a library of urban material signatures
for each cluster in a verified, high quality segmentation of an
AVIRIS image. The technique we present successfully labeled
21 of the 25 clusters with known material interpretations and
representative library signatures. The remaining clusters could
not be labeled because either their material interpretations
were unknown, or the library lacked representative material
signatures for those clusters. Both of these issues could
potentially be mitigated by augmenting the spectral library
with additional, detailed metadata describing the exact material
composition of all library spectra, or by including additional
library spectra which include such metadata.

The lack of exhaustive and detailed ground-truth data makes
the objective evaluation of automated labeling methods chal-
lenging. Even in cases where ground-truth data exists, it is of-
ten given for objects, rather than materials. Since it is currently
impossible to acquire exhaustive material labels for large
remote sensing surveys, synthetically-generated hyperspectral
imagery may be of significant help. We are currently analyzing
several images generated with the RIT DIRSIG [40] image
synthesis algorithm to determine their value in the verification
of automated labeling techniques.

As observed in [1], allowing the CI and CR terms to carry
equal weight in the CICR,; measure may be suboptimal. In this
work, we set o to 1.0 for straightforward comparison to earlier
works, but we expect to achieve improved spectral matching
performance by allowing other « values. An optimization pro-
cedure may be necessary to learn the best a-value, dependent
on the data. Another extension can be to treat o as a vector
of the same length as the number of spectral bands, and then
learn an optimal weighting for each band.

It is interesting to note that the CICR; measures outperform
the CI; and CR,; measures regardless of whether we use the
ED or SID distance measure. However, the choice of these
distance measures was primarily motivated by convenient
comparisons to existing works, and one could easily substitute
other measures in this calculation. Distance measures that
consider global covariances (e.g., the Bhattacharyya distance
[41]) or functional measures (e.g., the Sobolev distance [42])
may improve spectral matching performance.
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