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ABSTRACT

We present a metric learning approach to improve the performance
of unsupervised hyperspectral image segmentation. Unsupervised
spatial segmentation can assist both user visualization and auto-
matic recognition of surface features. Analysts can use spatially-
continuous segments to decrease noise levels and/or localize feature
boundaries. However, existing segmentation methods use task-
agnostic measures of similarity. Here we learn task-specific sim-
ilarity measures from training data, improving segment fidelity to
classes of interest. Multiclass Linear Discriminant Analysis pro-
duces a linear transform that optimally separates a labeled set of
training classes. This defines a distance metric that generalizes
to new scenes, enabling graph-based segmentations that empha-
sizes key spectral features. We describe tests based on data from
the Compact Reconnaissance Imaging Spectrometer (CRISM) in
which learned metrics improve segment homogeneity with respect
to mineralogical classes.
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1. HYPERSPECTRAL IMAGE SEGMENTATION

Unsupervised hyperspectral image segmentations can reveal spatial
trends that show the physical structure of the scene to an analyst.
They highlight borders and reveal areas of homogeneity and change.
Segmentations are independently helpful for object recognition, and
assist with automated production of symbolic maps. Additionally,
a good segmentation can dramatically reduce the number of effec-
tive spectra in an image, enabling analyses that would otherwise be
computationally prohibitive. In particular, using an oversegmenta-
tion of the image instead of individual pixels can reduce noise and
potentially improve the results of statistical post-analysis.

Recent work in hyperspectral image segmentation include the
watershed transform [1], Markov Random Fields [2], and the Felzen-
szwalb graph segmentation algorithm [3]. Generally speaking, these
techniques cluster pixels based on spatial proximity and a measure of
spectral similarity. Existing hyperspectral segmentation approaches
generally use task-agnostic distance measures that treat all channels
equally or weight them based on global statistical properties of the
dataset. Such metrics are often confused by noise, instrument arti-
facts, or spectral variations that are irrelevant to semantic categories
of interest. Learning a task-specific similarity metric from labeled
data can ameliorate this problem. Methods to learn such metrics
include Information Theoretic Metric Learning (ITML) [4], Neigh-
bourhood Components Analysis (NCA) [5], and variants of Gener-
alized Relevance Learning Vector Quantization (GRLVQ) [6].

This work aims to improve unsupervised segmentations by
learning a task-relevant measure of spectral similarity from expert-
labeled training data. We employ a multiclass Linear Discriminant

Analysis (LDA) based approach to learn this measure. Learned
measures produce segmentations that are not only are more visually
cohesive, but also quantitatively more accurate in separating known
materials into disjoint segments, in comparison to segmentations
produced using unweighted metrics. We evaluate this technique by
comparing a set of expert-labeled mineral class maps to the segmen-
tation maps produced by learned metrics, and provide a results on a
case study focusing on several well-analyzed CRISM images [7]

2. METRIC LEARNING FOR HYPERSPECTRAL IMAGE
SEGMENTATION

We use the Felzenszwalb segmentation algorithm for its simplicity
and computational efficiency [3, 8]. This is an agglomerative clus-
tering approach that joins pixels into groups based on a pairwise
distance d(xi,xj) between adjacent pixels xi and xj . The seg-
mentation algorithm represents the image as an 8-connected grid of
nodes; each node corresponds to a single pixel. All pixels are ini-
tially treated as separate segments and iteratively joined into larger
groups. We weight edges between the nodes according to d(xi,xj);
previous studies have used spectral angle distance and Euclidean
(Euc) distance. The maximum internal edge weight of a segment
S, Int(S), is defined as the largest edge weight in its minimum span-
ning tree, MST(S).

Int(S) = max
xi,xj

d(xi,xj) ∀ xi ∈ S, xj ∈ S, (xi,xj) ∈ MST(S)

The smallest edge weight that joins two neighboring segments Sa

and Sb (i.e. the most similar pixel pair on their border) defines the
cross-segment distance:

Dif(Sa, Sb) = min
xi,xj

d(xi,xj) ∀ xi ∈ Sa,xj ∈ Sb, (xi,xj) ∈ E

Two adjacent segments are merged when the cross-segment distance
is larger than the minimum of both internal weights, weighted by a
constant k and inversely proportional to a segment’s area |S|.

MInt(Sa, Sb) = min

(
Int(Sa) +

k

|Sa|
, Int(Sb) +

k

|Sb|

)
(1)

Larger k values cause a preference for larger segments, but is not a
minimum segment size – smaller segments are allowed when there
is a sufficiently large difference between spatially neighboring seg-
ments. However, in some cases, a minimum segment size is de-
sirable, so as a final step, we merge small segments below a user-
defined threshold ≥ 1 with their spectrally-closest neighbors.

We augment the segmentation algorithm with a task-specific
Mahalanobis distance metric learned from training data. The
(squared) Mahalanobis distance between samples {xi,xj} ∈ RD

is: dM(xi,xj) = (xi − xj)
TM(xi − xj), where M = ATA is a



D ×D linear transformation matrix. We seek to learn the matrix A
which best separates a set of samples belonging to C classes. Our
approach employs multiclass linear discriminant analysis (LDA) to
maximize the ratio of between-class vs. within-class separation S:

S = (αTΣbα)(αTΣwα)−1 (2)
Here, Σb and Σw are the between and within class scatter ma-
trices, respectively. By selecting the top C − 1 eigenvectors of
Σw

−1Σb, we define a projection into a C − 1 dimensional sub-
space that captures variability between features with respect to train-
ing data [9]. To prevent Equation 2 from becoming ill-posed due to
an insufficient number of training samples, we regularize Σw by a
parameter γLDA ∈ [0, 1] (selected via cross-validation) according to:
Σw = (1− γ)Σw + γI, where I is the identity matrix.

We also learn a Mahalanobis distance using Information The-
oretic Metric Learning [4]. ITML calculates the matrix M by
maximizing the relative entropy between a multivariate Gaussian
parametrized by a set of training samples, and another multivariate
Gaussian belonging to a known, well-behaved Mahalanobis distance
function. This maximization is constrained such that similar classes
remain nearby one another and dissimilar classes remain far apart in
the space defined by the learned metric. The ITML algorithm takes
a parameter γITML which controls the tradeoff between satisfying
similarity/dissimilarity constraints and maximizing the divergence
between the Gaussians. We use the code provided by the authors
[10] to learn the metric and select γITML.

3. EVALUATING SEGMENTATION RESULTS WITH
RESPECT TO CLASS KNOWLEDGE

We attempt a superpixel segmentation in which the image is conser-
vatively oversegmented; that is, we accept that single surface fea-
tures may be split into multiple segments, but try to ensure that each
individual segment - or superpixel - has homogeneous mineralogy
[8]. We compare superpixels produced using each metric to a set
of expert-labeled classes defined by a planetary geologist. The ge-
ologist identified the primary constituents in each of the images we
study, along with the image pixels containing the purest examples
of each mineral, and defined class maps for the materials using the
ENVI spectral angle mapper (SAM) function [11]. As a final step,
the geologist examines the spectral angles for each class and define
thresholds to filter out ambiguous or mixed materials. We exclude
these pixels from the following performance evaluation.

Because we seek an oversegmentation of an image, each expert-
labeled class will likely be split into multiple segments. However,
when we use a learned metric to segment each image, we expect the
resulting segments to be better separated with respect to the train-
ing classes – i.e., pixels in each segment are more likely to belong
to a single training class, rather than multiple classes – in compari-
son to metrics which do not account for class relationships. We de-
fine two measures to quantify the degree to which the resulting seg-
ments partition distinct mineralogical classes. The first measure is
the conditional entropy of the class map given the segmentation map,
H(class|seg). H(class|seg) quantifies the remaining uncertainty for
a random variable – in our case, the distribution of material classes –
given the value of another random variable – the partitions produced
by segmentation algorithm. In the case of a perfect segmentation
of the classes, H(class|seg) will be zero, as the segmentation per-
fectly reconstructs the class map. Thus, we prefer smaller values
of H(class|seg). Our second measure of segmentation quality, the
“impurity ratio,” is the ratio of “impure” vs. “pure” segments with
respect to the class map. A “pure” segment consists of pixels be-
longing to a single class, whereas an “impure” segment consists of

pixels belonging to multiple classes. Because segment size can bias
this score, we scale the impurity ratio for each segment by its size in
pixels. As with H(class|seg), smaller impurity ratios are better.

We evaluate the quality of segmentations produced by each met-
ric learning algorithm by segmenting spatially contiguous halves of
each image. We sample 100 spectra from each class from the first
half of the image (subsequently referred to as the “train” image), and
use these points to train each metric learning algorithm. We then seg-
ment the train image and the remaining half of the image (the “test”
image), using the metrics produced by LDA, ITML and the (base-
line) Euclidean distance. Both the distance metric and the internal
bias k (Equation 1) alter the size – and subsequently the quantity –
of the resulting superpixels. To objectively compare results between
several metrics, we must compare segmentations that produce a sim-
ilar number of superpixels. To achieve this balance, we segment each
image using a range of k values in [10−3, 101] and provide overall
statistics for segmentations produced by each metric on that range.
We chose this range because the number of superpixels produced by
each metric followed a similar trend for all of the images we stud-
ied. We focus on segmentations that produce 200-1250 superpixels,
as segmentations with few superpixels tend to inadequately capture
morphological characteristics of the imagery we study, while seg-
mentations with large quantities of superpixels are more sensitive to
noise and insignificant differences in spectra. We ignore superpix-
els consisting of less than 50 pixels, as they tend to be unstable and
noisy with respect to the training classes. Ignoring these small su-
perpixels is done for evaluation purposes only, as it allows for a more
consistent evaluation of the resulting segmentation maps.

4. CASE STUDY: CRISM IMAGERY
We examine three well-studied CRISM scenes: 3e12, 3fb9, and 863e
(omitting the frt0000 catalog prefix). We use the Brown CRISM
Analysis Toolkit [12] to perform radiometric correction and atmo-
spheric calibration, and remove noisy bands in the extreme short
and long wavelengths, leaving a total of 231 bands in the in the
[1.06, 2.58] µm range for analysis. Our final preprocessing step
is to normalize each spectrum by its Euclidean norm, to compen-
sate for linear illumination effects [13]. Figure 1 shows the normal-
ized mean spectra of the most pure, expert-labeled material samples
for the classes in each image we consider. See [8] for further de-
tails regarding these images and their constituent material classes.
Figures 2 and 3 give the H(class|seg) and impurity ratios, vs. the
number of segments using each metric. LDA outperforms both the
Euclidean metric and ITML, sometimes dramatically (e.g. on im-
ages 863e and 3fb9). The Euclidean metric performs worst, which
is not surprising since it is more susceptible to noise that a learned
metric will often suppress. ITML yields similar performance to
the Euclidean distance for training images 3e12 and 3fb9, which is
likely because the quantity of training samples is small for these two
images – which consist of two and three material classes, respec-
tively. On image 863e, with training consisting of 5 material classes,
ITML approaches the performances of LDA. This is also reflected
in the summary statistics per-image for each segmentation given in
Table 1. Note that the performance improvements on testing data
over training data on the 863e image are due to the fact that the
test image contains a smaller number of Kaolinite (670) and Mont-
morillionite (93) pixels than in the training image, which are easily
confused with other training classes (e.g., Kaolinite vs. FeMg Smec-
tice). Figure 4 shows a set of resulting segmentation maps for which
the Euclidean and LDA/ITML-learned metrics produced a compara-
ble number of segments. Visually, the LDA-based segmentation pro-
duces segments that better match the underlying morphology of the
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Fig. 2. H(class|seg) values for Euc (green), LDA (yellow) and
ITML (magenta) segmentations vs. number of segments on train-
ing (left) and testing (right) images.
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Fig. 3. Impurity ratios for Euc (green), LDA (yellow) and ITML
(magenta) segmentations vs. number of segments on training (left)
and testing (right) images.

FeMg Smectite

Fig. 1. Normalized mean spectra of samples from most pure mate-
rial classes in images 3e12, 3fb9 and 863e. The “neutral” class in
image 863e is a mostly featureless, dark material which is spectrally
dissimilar from each of the other material species. Due to varying
atmospheric and illumination conditions at capture time, and differ-
ences caused by atmospheric calibration, spectra belonging to the
same material species may not have identical spectral representa-
tions in different images - e.g., the olivine spectra in image 3e12 vs.
those in 3fb9.

image data. The Euclidean-based segmentation, and to a lesser de-
gree, the ITML-based segmentation, both suffer from column strip-
ing artifacts as noisy bands are not well compensated for using these
metrics. This is also reflected in the per-class purity percentages
given in Table 2. Both learned metrics outperform the baseline, with
LDA improving over the Euclidean metric for material classes FeMg

H(class|seg)
Image Euc LDA ITML
3e12 0.0169 / 0.0676 0.0148 / 0.0588 0.0191 / 0.0655
3fb9 0.0884 / 0.378 0.0497 / 0.242 0.0972 / 0.354
863e 0.0473 / 0.00403 0.0184 / 0.000584 0.031 / 0.00228

Impurity/Purity
Image Euc LDA ITML
3e12 0.018 / 0.0619 0.0116 / 0.0573 0.02 / 0.0596
3fb9 0.0661 / 0.296 0.0368 / 0.195 0.0745 / 0.294
863e 0.0684 / 0.032 0.0398 / 0.0124 0.0611 / 0.0266

Table 1. Average H(class|seg) and impurity ratios for each image
and similarity metric. Green and red fonts indicate the best and worst
performing metrics, respectively.

Smectite, Montmorillonite and Nontronite. ITML gives comparable
performance to LDA for most materials, but the gains are not as sig-
nificant for the Montmorillionite and Nontronite classes.

Class (# pixels) Euc LDA ITML
FeMg Smectite (6443) 26 49 48
Kaolinite (4051) 98 99 99
Montmorillonite (10901) 11 31 17
Nontronite (4753) 37 52 40
Neutral Region (115225) 97 99 98
Average 53 66 60

Table 2. Average pure pixels / segment for Euclidean, LDA and
ITML-based segmentations of image 863e (Figure 4). Best and
worst average per-class accuracy given in green and red font, re-
spectively.

5. DISCUSSION AND FUTURE WORK

The superior performance of LDA over ITML on all three of our
images is somewhat surprising, considering the simplicity of the
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Class (# pixels) Euc LDA ITML
FeMg Smectite (6443) 26 49 48
Kaolinite (4051) 98 99 99
Montmorillonite (10901) 11 31 17
Nontronite (4753) 37 52 40
Neutral Region (115225) 97 99 98
Average 53 66 60

Table 2. Pure pixels / segment for Euclidean, LDA and ITML-based
segmentations of image 863e shown in Figure 4. Best and worst
average per-class accuracy given in green and red font, respectively.

is to normalize each spectrum by its Euclidean norm, to compensate
for linear illumination effects. Figure 1 shows the mean spectra of
the most pure material samples for the classes within each image
we consider in this work. See [1] for further details regarding these
images and their constituent material classes.

Figures 2 and 3 give the H(class|segment) and purity scores, re-
spectively, vs. the number of segments produced by each metric.
LDA outperforms both the baseline Euclidean metric and ITML, oc-
casionally quite dramatically (e.g. on images 863e and 3fb9). The
Euclidean metric performs worst, which is not surprising since it is
more susceptible to noise that a learned metric will often suppress.
ITML yields about the same performance as the Euclidean distance
for train images 3e12 and 3fb9, which is likely because that these im-
ages only contain two and three material classes, respectively. The
quantity of training samples is small for these two images, and ITML
inadequately determines which spectral bands are the most promi-
nent. However, ITML still exhibits improved generalization perfor-
mance on test data over the baseline Euclidean distance, indicating
that some noise characteristics are potentially captured. This is also
reflected in the summary statistics per-image for each segmentation
metric given in Table 1.

Figure 4 shows a set of resulting segmentation maps for which
the Euclidean metric, and LDA/ITML-learned metrics produced a
comparable number of segments. Visually, the LDA-based segmen-
tation produces segments that better match the underlying morphol-
ogy of the image data. The Euclidean-based segmentation, and to a
lesser degree, the ITML-based segmentation, both suffer from col-
umn striping artifacts as noisy bands are not properly weighted by
these metrics.

Table 2 gives the percentages of pure segments for each material
species for the three segmentation metrics. Both learned metrics out-
perform the baseline, with LDA improving over the Euclidean metric
for material classes FeMg Smectite, Montmorillonite and Nontron-
ite. ITML gives comparable performance to LDA for most materi-
als, but the gains are not as significant for the Montmorillionite and
Nontronite classes.

5. DISCUSSION AND FUTURE WORK

The superior performance of LDA over ITML is somewhat surpris-
ing, considering the simplicity of the LDA projection in comparison
to the expectedly more robust optimization performed by ITML. An
issue with ITML (as observed by Parameswaran et al. in [11]) is
that the (global) metric is not optimized locally, which can cause
problems with overfitting to multi-modal data distributions. Con-
versely, (regularized) LDA does not suffer (to the same degree) from
such overfitting issues. Additional training samples or alternative
regularization schemes would likely improve ITMLs generalization
capabilities.

One avenue which we are currently exploring is the potential
for learning class structure across multiple, related images. We have
developed an technique, Multi-Domain/Multi-Class LDA (MDMC-
LDA) and a corresponding regularization scheme which allows LDA
to exploit class structure local to an individual image while simulta-
neously capturing class relationships common to other images with
related classes [12].
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LDA projection in comparison to the more theoretically elegant op-
timization performed by ITML. An issue with ITML (as observed
by Parameswaran et al. in [14]) is that the (global) metric is not op-
timized locally, which can cause problems with overfitting to multi-
modal data distributions. Regularized LDA does not suffer (at least,
to the same degree) from such overfitting issues. Also, it may be nec-
essary to use more samples per class to learn the metric using ITML.
We expect additional training samples or alternative regularization
schemes will likely yield improved results using ITML.

One avenue we are exploring is learning class structure across
multiple, related images. We have developed an technique, Multi-
Domain/Multi-Class LDA (MDMC-LDA) and a corresponding
regularization scheme which allows LDA to exploit class structure
local to individual images while simultaneously capturing class re-
lationships common to other images with similar classes [15].
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