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ABSTRACT

We propose a novel approach for multiclass domain adaptation using
an iterative manifold alignment technique inspired by the TRiplet-
based Iterative ALignment (TRIAL) protein structure alignment
algorithm. Our technique learns a rigid transformation for each
class using a set of automatically-selected pivot samples that char-
acterize the relative relationships between classes in two similar, but
not identical, feature spaces. We demonstrate that our technique
robustly reconciles domain-specific differences between similar
classes in hyperspectral images captured under different conditions,
and yields more accurate results than recently-proposed manifold
alignment techniques. We evaluate our method on a pair of real-
world hyperspectral images of Cuprite, NV, and provide a MATLAB
implementation of our algorithm, available online.

Index Terms— domain adaptation, manifold alignment, multi-
class, classification

1. DOMAIN ADAPTATION FOR HYPERSPECTRAL
IMAGE CLASSIFICATION

Spectra captured by modern hyperspectral imaging platforms pro-
vide ample signal content to identify spectrally similar but distinct
materials. Unfortunately, in remote-sensing applications, represen-
tative samples are not always available to train a classifier to reliably
classify all known materials in a given scene. In such cases, incor-
porating training samples from other, similar images is an attractive
option, but poses significant challenges. In particular, spectra rep-
resenting identical materials have different spectral signatures when
captured under different conditions (e.g., by different sensors, at dif-
ferent spatial locations, or at different capture times). Consequently,
reconciling differences between training (or source) and test (target)
spectra captured under different conditions is crucial to accurately
transfer knowledge of source classes to classify target spectra.

Several recent works propose domain adaptation techniques to
reconcile differences between spectra captured under different con-
ditions. Some of these involve active learning techniques, which
require user intervention to select target samples most relevant to
the domain adaptation problem (e.g., [1, 2]). While active-learning
approaches produce good results, requiring expert intervention lim-
its the applicability of the technique for fully-autonomous applica-
tions, such as onboard spacecraft. Another approach is to automat-
ically adapt a pre-trained classifier to classify similar imagery (e.g.,
[3, 4, 5]). However, such techniques assume a specific type of classi-
fier has been trained that can subsequently be tuned to the new data.

An attractive alternative to the aforementioned techniques is to
learn a transformation that maps the source and target spectra to a
similar feature space. By learning such a mapping, we can apply a
classification algorithm of our choosing in the transformed feature
space. Yang et al. recently demonstrated that manifold alignment
techniques are well-suited to learn such mappings for hyperspec-

tral domain adaptation tasks [6]. However, most existing manifold
alignment techniques learn a single global transformation between
domains (e.g., [7, 8]. While applying a global transformation can
resolve systematic differences between domains, it may prove inad-
equate in resolving the local differences caused by varying viewing
geometries, illumination or atmospheric conditions that alter the ra-
diances observed at the sensor of specific materials in a class-specific
manner [9].

In this work, we present the MARTIAL (MAnifold Reconcil-
iation Through Iterative ALignment) algorithm for multiclass do-
main adaptation. MARTIAL extends our previous domain adapta-
tion work ([10]) by incorporating an iterative manifold alignment ap-
proach inspired by the TRIAL protein structure alignment algorithm
of Venkateswaran et al. [11]. By learning a set of rigid transfor-
mations between the source and target feature spaces using a set of
automatically-selected pivot samples representing identical classes
in both domains, MARTIAL can reconcile class-specific differences
more accurately than techniques that learn a single global transfor-
mation between domains. Additionally, we can train and apply any
classifier in the resulting transformed feature space to classify target
data. We evaluate our results on real-world hyperspectral images of
Cuprite, NV, and provide a MATLAB implementation for convenient
experimentation.1

2. MULTICLASS DOMAIN ADAPTATION WITH
MARTIAL

We assume are provided NS source domain samples (XS , Y S) ={
(xSi , y

S
i )
}NS

i=1
, xSi ∈ Rn, ySi ∈ {1, . . . ,K}, drawn from source

distribution pS(X ,Y). We also assume MS � NS unlabeled sam-

ples are available in the source domain XSu =
{
xSui

}MS

i=1
. Our

goal is to find a transformation T : Rn → Rn that maps samples
drawn from pS(X ,Y) to the feature space of NT target samples

XT =
{
xTi
}NT

i=1
, xTi ∈ Rn, drawn from a similar distribution

pT (X ,Y). We can subsequently train a classifier h : X → Y to
predict the class labels Y T using the transformed source samples
XST as training data. The MARTIAL algorithm uses several com-
ponents of the TRIAL algorithm to learn a transformation for each
source class to the target domain. Before we describe the MARTIAL
algorithm, we provide a brief synopsis of the TRIAL algorithm be-
low.
The TRIAL Algorithm: Given a pair of proteins A = {ai}N

A

i=1

and B = {bj}N
B

j=1, each consisting of 3-dimensional Cα atoms
{ai,bj}, TRIAL aligns the manifolds defined by A and B such that
their alignment length – the number of paired Cα atoms (ai,T ·bj)
nearby one another after applying a (3 × 3) transformation matrix
T to each bj ∈ B – is maximized. This allows TRIAL to identify

1Available at: http://www.ece.rice.edu/˜bdb1/#code
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structural commonalities between A and B which may be arbitrar-
ily rotated with respect to one another. The algorithm consists of
three main steps: (1) triplet (seed) alignment (denoted Seed), (2)
initial alignment (Align), and (3) iterative improvement (Improve).
In step (1), TRIAL searches for pairs of triplet (or seed) Cα atoms
PA =

{
pA1 ,p

A
2 ,p

A
3

}
⊂ A, PB =

{
pB1 ,p

B
2 ,p

B
3

}
⊂ B that

are structurally similar to one another in terms of the Euclidean dis-
tances between their constituent atoms. TRIAL uses these pairs to
find a preliminary, minimum root mean square deviation (RMSD)
alignment between A and B using the Kabsch algorithm [12]. After
filtering out any seed pairs producing degenerate (i.e., high RMSD)
alignments, TRIAL reduces the RMSD between PA and PB while
increasing the number of atoms in alignment (step (2)). It achieves
this by iteratively recomputing T after adding any pairs (ai,T ·bj)
whose Euclidean distances are less than a user-defined threshold ε to
the PA and PB sets, repeating the process until no more such pairs
within the threshold can be added. During the final, iterative im-
provement step (3), TRIAL ensures that alignment length between
A and B is maximized without increasing the RMSD of the aligned
solution. Similarly to step (2), this involves recomputing T after it-
eratively adding any (ai,T · bj) with distance less than an upper
bound εmax computed from the current solution set (PA,PB ,T).
Domain Adaptation with the MARTIAL Algorithm: The TRIAL
algorithm has several attractive properties that lend themselves fa-
vorably to domain adaptation problems. Whereas several existing
manifold alignment techniques assume a substantial quantity of (la-
beled) pairwise correspondences between domains are available at
initialization (e.g. [7, 8]), TRIAL is capable of adapting to the prop-
erties of the source and target manifolds with a relatively small num-
ber of labeled correspondences (≈ 10−100 per-class) by iteratively
refining the mapping between domains by incorporating informa-
tive unlabeled samples. Additionally, the rigid transformations com-
puted by TRIAL preserve functional relationships between adjacent
spectral bands, which are crucial for accurate classification of hyper-
spectral signatures [13].

However, several issues arise which prevent us from applying
TRIAL directly in domain adaptation scenarios. Specifically, in
domain adaptation, our objective is to minimize misclassifications,
rather than maximizing the number of aligned samples between
the source and target domains. Additionally, while we can assume
that the Cα atoms in A and B each lie on single submanifold of
R3, samples representing different classes in the source and target
data can be viewed as lying on their own submanifolds of Rn, and
the submanifold of a particular class in the target domain may be
arbitrarily transformed with respect to the submanifold of the same
class in the source domain. Finally, we must consider problems
involving hundreds to thousands of samples of high dimensionality,
which involves significantly greater computational costs than those
involved in protein alignment problems.

We account for these challenges by making the following mod-
ifications the TRIAL algorithm: (1) we perform an initial filtering
step where we select a pool of candidate pivot samples that are struc-
turally similar with respect to class structure in both the source and
target domains; (2) rather than learning a single global transforma-
tion between the domains, we learn separate transformations for each
of the source classes using the candidate pivot samples. This allows
us to resolve domain-specific differences relative to each class, while
also constraining the number of samples considered during align-
ment; and (3) we automatically compute the RMSD threshold ε for
each class by randomly selecting a set of initial seed pairs of fixed
size from the set of candidate pivots that produce a low RMSD trans-

form between the pivots for each class. While this is not guaranteed
to produce an optimal RMSD transformation, we found that select-
ing the lowest RMSD transformation over 25-50 seed pairs works
well in practice to filter out degenerate solutions.

Algorithm 1 MARTIAL

Input: NS labeled source samples (XS , Y S), MS unlabeled
source samples XSu, NT unlabeled target samples XT , num-
ber of candidate pivots NP

i per class, number of seed samples
per class Qi, number of random inits Nrand.

Output: Target-transformed source samples XST

1: Use MCCL to select NP candidate pivots P = (PS ,PT , Y P ),
PS ⊂ (XS ∪XSu), PT ⊂ XT .

2: XST = ∅
3: for i = 1 to K do
4: XS

i =
{
xSj ∈ XS : ySj = i

}
5: Pi =

{
(pSj ,p

T
j ) ∈ P : yPj = i

}
6: (PSeed,TSeed, εSeed) = SEEDINIT(Pi, Qi, Nrand)
7: TS

i = TRIAL(Pi,PSeed,TSeed, εSeed)
8: XST =

{
XST ∪TS

i ·XS
i

}
9: end for

Algorithm 1 describes the MARTIAL algorithm, which maps a
set of labeled source samples (XS , Y S) to the target domain feature
space. The algorithm begins by using the Multiclass Continuous
Correspondence Learning (MCCL) algorithm ([10], Algorithm 1) to
select a pool P = (PS ,PT , Y P ) of NP candidate pivot samples.
We denote the set of NP

i pivots representing the ith class as Pi =

(PS
i ,P

T
i ) =

{
(pSj ,p

T
j )
}NP

i

j=1
. The set of NP source pivots pSj ∈

PS consist of the top NP
i samples in (XS ∪ XSu) nearest to the

mean of each source class. For each source pivot pSj ∈ PS , MCCL
selects the target pivot pTj = xT` ∈ XT most likely to belong to the
same class as pSj according to

` = argmin
i
‖R(pSj ,PS)− R(xTi ,P

S)‖, i ∈ {1, . . . , NT }, (1)

where

R(x,PD) =

(
d(x,pD1 )∑Q
`=1 d(x,pD` )

, . . . ,
d(x,pDQ)∑Q
`=1 d(x,pD` )

)
, (2)

for D ∈ {S, T} and Q =
∑K
i=1Qi. The R function maps x to a Q-

dimensional feature space where each feature gives the likelihood of
distinguishing x from pivot sample pD` ∈ PD , according to distance
measure d(·, ·)2. By selecting the candidate pivots in this “R-space,”
MCCL finds target samples that approximately preserve the relative
distances between the source classes. When the source and target
feature spaces are similar, these target pivots typically represent the
same classes as their corresponding source pivots.

After selecting the candidate pivots, MARTIAL uses Pi to com-
pute the Seed alignment transformation TSeed for source samples
from the ith class, XS

i . This is achieved by sampling Nrand seed
pairs from Pi, each consisting of Qi < NP

i samples of the form
PSeed = (PS

Seed,P
T
Seed) =

{
(pSj ,p

T
j )
}Qi

j=1
, and applying the Kabsch

algorithm to each seed pair, returning the (TSeed,PSeed) that yields
the smallest value of εSeed = RMSD(TSeed ·PS

Seed,P
T
Seed) (Step 6).

We then pass this filtered set of pivots to the TRIAL function
for refinement (Step 7), which performs the initial alignment and
iterative improvement steps of the TRIAL algorithm as described
in [11] (Figures 2 and 4). The TRIAL function returns the n × n
transformation matrix TS

i that maps XS
i target feature space. We

2In this work, d(·, ·) is the Euclidean distance.



add TS
i ·XS

i to the set of transformed source samples XST (Step 8).
We can then use the transformed source samples (XST , Y S) to train
a multiclass classifier to predict labels for target samples XT .

3. EXPERIMENTAL RESULTS: CUPRITE, NV IMAGERY
We consider a challenging multi-sensor, multi-temporal domain
adaptation problem to evaluate our methodology. Our objective is
to classify a set of mineralogical spectra from one hyperspectral
image using training data from another image of the same location,
but captured by a different sensor and under different environmental
conditions. Our data consists of five mineralogical classes manu-
ally labeled by an expert geologist from two images of the Cuprite
mining district in Cuprite, NV. Image Av97 was captured in June 19,
1997 by the AVIRIS instrument, consists of 512×614 pixels, and
was studied in detail in [14]. Image Hyp11 was acquired on Feb.
6, 2011 by the Hyperion instrument onboard the EO-1 satellite, and
contains 1798×779 pixels. Each pixel is a 29-dimensional vector of
image radiance values measured at wavelengths in the range 2.1029-
2.3249µm. We perform atmospheric calibration via the empirical
line method and scale each pixel by its L2 norm to compensate for
linear illumination effects. The class means and sample counts from
each image are shown in Figure 1. We segment each image using
the technique described in [15], and use the means of the resulting
segments for pivot selection. Initial domain adaptation experiments,
along with false-color composites of each image and training sample
locations are described in detail in [10].2.1029 2.1685 2.2341 2.2996 2.3652
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Fig. 1. Class means for Av97 (left) and Hyp11 (right) images. Sam-
ple counts for each class are given in parenthesis.

We consider the following two scenarios. We first train a
classifier using source data from the Av97 image to classify tar-
get data from the Hyp11 image. We refer to this scenario as
Av97⇒Hyp11 . In the second scenario, Hyp11⇒Av97 , we use
the Hyp11 data as the source data, and classify target data from
the Av97 image. In each scenario, we measure the baseline (i.e.,
no domain adaptation) source-to-target (ST) classification accu-
racy, which provides a baseline accuracy we seek to improve. We
then measure the classification accuracy using the transformations
produced by the MARTIAL Seed (Algorithm 1, Step 6), Align
and Improve (Step 7) steps. We select NP

i = 250 candidate piv-
ots from each class, and evaluate classification accuracy for seed
sizes Qi ∈ {10, 12, 15, 20, 24, 30, 36, 40, 42, 50, 75, 100}. We
compare our results to those produced using the “Manifold Align-
ment using Procrustes Analysis” (denoted Procrustes) technique of
Wang and Mahadevan [8], which computes a single global trans-
formation between the source and target domains using the Kabsch
algorithm.3 We also provide results after mapping the source and
target spectra to the R-space using source samples in their origi-
nal feature space (RSource) and the source samples produced after
applying the MARTIAL Seed (RSeed), Align (RAlign) and Improve
(RImprove) steps. We use the same Qi pivots from each class used
in the MARTIAL Seed alignment step for the Procrustes and the

3The MARTIAL seed alignment step can be interpreted as applying the
Procrustes alignment algorithm to the pivots representing each class.

R-space mappings. Our classifier is the multiclass linear Support
Vector Machine (SVM) implemented in the LIBSVM package [16],
evaluated using five-fold cross-validation. We select the SVM slack
parameter C ∈ {10−3, . . . , 103} that yields the highest accuracy on
the source data.

Figure 2 shows the classification accuracy vs. the number of
seed samples Qi for each algorithm in the Av97⇒Hyp11 (left) and
Hyp11⇒Av97 (right) scenarios. In the Av97⇒Hyp11 scenario, we
observe that classifying source samples after each of the MARTIAL
Seed, Align and Improve steps produces accuracies significantly bet-
ter than the baseline (8-11%). The poor performance by the Pro-
crustes alignment algorithm for most Qi values suggests that the
single global transformation computed using the pivot samples does
not adequately resolve the class-specific differences between the im-
ages. We also observe dramatic improvements over the Procrustes
alignment using MARTIAL in the Hyp11⇒Av97 scenario. How-
ever, as noted in [10], because the classes are better separated in the
Av97 image than in the Hyp11 image, we achieve high classification
accuracy (≈ 94%) in the Hyp11⇒Av97 scenario with the baseline
(ST) classifier. The remaining classes are challenging to separate, as
indicated by the roughly comparable performance to the baseline us-
ing each of the domain adaptation algorithms. On average, however
(as shown in Table 1 below), classifying source samples transformed
by MARTIAL yields slightly better accuracies than the baseline.

We observe more substantial improvements in classification ac-
curacy when we classify our data in the R-space (Equation (2)) af-
ter applying MARTIAL (Figure 3). In the Av97⇒Hyp11 scenario,
classifying the target samples in the R-space using the source data
transformed by MARTIAL produces uniformly better results for all
Qi than in the R-space with the original source features (Rsource),
indicating that the domains are better reconciled after applying the
MARTIAL transformations. The R-space classification results us-
ing MARTIAL are also better than those given in Figure 2 for all
Qi 6= 100. Not surprisingly, as the classification accuracies in the
Hyp11⇒Av97 scenario are already high, the RSource and the MAR-
TIAL RAlign and RImprove cases produce comparable, but not signifi-
cantly better accuracies (±1%).

Table 1 provides a summary of the classification accuracies of
each method, averaged over the range of Qi values. We see that the
MARTIAL feature space produced by the Align step yield the most
accurate results in the Av97⇒Hyp11 scenario, and perform compa-
rably to MCCL in the Hyp11⇒Av97 scenario. We also note that the
accuracies produced after applying the Align step are typically equal
or slightly better than those produced after the subsequent Improve
step. This may be somewhat surprising, as one may expect that in-
corporating additional samples in the Improve step would produce
a more robust alignment between the domains. However, since the
pivots from each class are highly-correlated, using a large number of
redundant pivots often produces worse results than using a smaller
set of less-redundant pivots.

4. CONCLUSIONS AND FUTURE WORK
In this work, we introduced the MARTIAL algorithm, which ex-
tended the TRIAL protein alignment algorithm to high-dimensional,
multiclass domain adaptation scenarios. We showed improvements
in classification accuracy of up to 10% over manifold alignment
techniques that learn a single global transformation between do-
mains by learning a set of transformations for each class according
to a set of automatically selected pivot samples, and up to 6%
improvements over our previously-proposed domain adaptation
technique, MCCL. Our experiments indicate our technique typically
yields accuracies slightly above (0.5-1.5%) the baseline (ST) in
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Fig. 2. Classification accuracy vs. number of seed samples Qi for
the Av97⇒Hyp11(left) and Hyp11⇒Av97(right) scenarios

Figure 3 gives the accuracy vs. the number of seed samples Qi

for the Av97⇒Hyp11(left) and Hyp11⇒Av97(right) scenarios for
the MCCL algorithm applied in the original source feature space
(MCCL) vs. the MARTIAL seed (MCCLseed) and align (MCCLalign)
features.
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Fig. 3. Classification accuracy vs. number of seed samples Qi for
the Av97⇒Hyp11(left) and Hyp11⇒Av97(right) scenarios

Conclusions

In this work, we introduced the MARTIAL algorithm for multiclass
domain adaptation via manifold alignment. By learning a set of
transformations for each class using a variant of the TRIAL algo-
rithm, we demonstrated 5-10% improvements in classification ac-
curacy over the manifold alignment using procrustes analysis tech-
nique, and 2-5% improvements over our previously-proposed do-
main adaptation technique, MCCL.
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Conclusions

In this work, we introduced the MARTIAL algorithm for multiclass
domain adaptation via manifold alignment. By learning a set of
transformations for each class using a variant of the TRIAL algo-
rithm, we demonstrated 5-10% improvements in classification ac-
curacy over the manifold alignment using procrustes analysis tech-
nique, and 2-5% improvements over our previously-proposed do-
main adaptation technique, MCCL.

References

[1] Wonkook Kim, Melba M Crawford, and Joydeep Ghosh, “Spa-
tially Adapted Manifold Learning for Classification of Hy-
perspectral Imagery with Insufficient Labeled Data,” Proc.
2008 International Geosci. and Sens. Symposium (IGARSS08),
2008.

[2] Claudio Persello and Lorenzo Bruzzone, “A novel active learn-
ing strategy for domain adaptation in the classification of re-
mote sensing images,” IEEE Geoscience and Remote Sensing
Symposium, pp. 3720–3723, 2011.

[3] Suju Rajan, Joydeep Ghosh, and Melba M Crawford, “Exploit-
ing Class Hierarchies for Knowledge Transfer in Hyperspectral
Data,” IEEE Trans. on Geoscience and Remote Sensing, vol.
44, no. 11, pp. 3408–3417, 2006.

[4] Wonkook Kim and Melba M Crawford, “Adaptive classifica-
tion for hyperspectral image data using manifold regularization
kernel machines,” Geoscience and Remote Sensing, 2010.

[5] Lorenzo Bruzzone and Mattia Marconcini, “Domain Adap-
tation Problems: A DASVM Classification Technique and a
Circular Validation Strategy,” IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. 32, no. 5, pp. 770–787, 2010.

[6] Hsiuhan Lexie Yang and Melba M Crawford, “Manifold Align-
ment For Classification Of Multitemporal Hyperspectral Data,”
Proc. IEEE WHISPERS, pp. 1–4, Apr. 2011.

[7] Jayendra Venkateswaran, Bin Song, Tamer Kahveci, and Chris
Jermaine, “TRIAL: A Tool for Finding Distant Structural Sim-
ilarities,” IEEE/ACM Transactions on Computational Biology
and Bioinformatics, vol. 8, no. 3, pp. 819–831, 2011.

[8] W Kabsch, “A discussion of the solution for the best rotation
to relate two sets of vectors,” Acta Crystallographica Section
A: Crystal Physics, vol. 34, pp. 827–828, Sept. 1978.

[9] Brian D Bue and David R Thompson, “Multiclass Continuous
Correspondence Learning,” NIPS Domain Adaptation Work-
shop, Dec. 2011.

[10] Fred A Kruse, JW Boardman, and JF Huntington, “Compari-
son of airborne hyperspectral data and EO-1 Hyperion for min-
eral mapping,” IEEE Trans. on Geoscience and Remote Sens-
ing, vol. 41, no. 6, pp. 1388–1400, 2003.

[11] David R Thompson, Lukas Mandrake, Martha S Gilmore, and
R Castaño, “Superpixel endmember detection,” IEEE Transac-
tions on Geoscience and Remote Sensing, pp. 1–19, Jun 2010.

[12] Chang Wang and S Mahadevan, “Manifold alignment using
Procrustes analysis,” Proceedings of the 25th international
conference on Machine learning, pp. 1120–1127, 2008.

[13] C.C Chang and C.J Lin, “LIBSVM: a library for support vec-
tor machines,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 2, no. 3, pp. 27, 2011.

!"#$%&

!"$'%&

!"$$%&

!"('%&

!"($%&

!")'%&

!")$%&

*!& '!& +!& ,!& %!& #!& $!& (!& )!& *!!&

ST Procrustes MCCL Seed Align Improve 

!"#$%&

!"$'%&

!"$$%&

!"('%&

!"($%&

!")'%&

!")$%&

*!& '!& +!& ,!& %!& #!& $!& (!& )!& *!!&

ST Procrustes MCCL Seed Align Improve 

Fig. 2. Classification accuracy vs. number of seed samples Qi for
the Av97⇒Hyp11 (left) and Hyp11⇒Av97 (right) scenarios with the
baseline (ST, black �), Procrustes alignment (red �), and MARTIAL
Seed (purple ×), Align (turquoise ∗), and Improve (orange ◦).

0.775 

0.795 

0.815 

0.835 

0.855 

0.875 

0.895 

0.915 

0.935 

0.955 

0.975 

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100 Qi Qi

Ac
cu
ra
cy

misclassified samples are from nonlinearly separable or potentially
mixed/overlapping classes.

0.675 

0.725 

0.775 

0.825 

0.875 

0.925 

0.975 

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100 

!"#$%&

!"$'%&

!"$$%&

!"('%&

!"($%&

!")'%&

!")$%&

*!& '!& +!& ,!& %!& #!& $!& (!& )!& *!!&

ST Procrustes MCCL Seed Align Improve 

Qi Qi

Ac
cu
ra
cy

Fig. 2. Classification accuracy vs. number of seed samples Qi for
the Av97⇒Hyp11(left) and Hyp11⇒Av97(right) scenarios

Figure 3 gives the accuracy vs. the number of seed samples Qi

for the Av97⇒Hyp11(left) and Hyp11⇒Av97(right) scenarios for
the MCCL algorithm applied in the original source feature space
(MCCL) vs. the MARTIAL seed (MCCLseed) and align (MCCLalign)
features.

0.775 

0.795 

0.815 

0.835 

0.855 

0.875 

0.895 

0.915 

0.935 

0.955 

0.975 

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100 

!"#$%&

!"$'%&

!"$$%&

!"('%&

!"($%&

!")'%&

!")$%&

*!& '!& +!& ,!& %!& #!& $!& (!& )!& *!!&

MCCL MCCL     MCCL      MCCL        

!"#$%&

!"$'%&

!"$$%&

!"('%&

!"($%&

!")'%&

!")$%&

*!& '!& +!& ,!& %!& #!& $!& (!& )!& *!!&

ST Procrustes MCCL Seed Align Improve 

!"#$%&

!"$'%&

!"$$%&

!"('%&

!"($%&

!")'%&

!")$%&

*!& '!& +!& ,!& %!& #!& $!& (!& )!& *!!&

ST Procrustes MCCL Seed Align Improve 

!"#$%&

!"$'%&

!"$$%&

!"('%&

!"($%&

!")'%&

!")$%&

*!& '!& +!& ,!& %!& #!& $!& (!& )!& *!!&

ST Procrustes MCCL Seed Align Improve 

Qi Qi

Ac
cu
ra
cy

Fig. 3. Classification accuracy vs. number of seed samples Qi for
the Av97⇒Hyp11(left) and Hyp11⇒Av97(right) scenarios

Conclusions

In this work, we introduced the MARTIAL algorithm for multiclass
domain adaptation via manifold alignment. By learning a set of
transformations for each class using a variant of the TRIAL algo-
rithm, we demonstrated 5-10% improvements in classification ac-
curacy over the manifold alignment using procrustes analysis tech-
nique, and 2-5% improvements over our previously-proposed do-
main adaptation technique, MCCL.
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Conclusions

In this work, we introduced the MARTIAL algorithm for multiclass
domain adaptation via manifold alignment. By learning a set of
transformations for each class using a variant of the TRIAL algo-
rithm, we demonstrated 5-10% improvements in classification ac-
curacy over the manifold alignment using procrustes analysis tech-
nique, and 2-5% improvements over our previously-proposed do-
main adaptation technique, MCCL.
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ST Procrustes Seed Align Improve RSource RSeed RAlign RImprove

Av97⇒Hyp11 71.49% 73.29% 81.69% 82.35% 81.67% 80.27% 83.10% 83.20% 83.08%
Hyp11⇒Av97 93.99% 82.75% 93.43% 94.28% 94.05% 95.82% 92.69% 95.11% 94.36%

Table 1. Average accuracy over the range of selected Qi values for each technique. The first and second most accurate results are given in
red and blue italics, respectively.

cases when the baseline accuracy is already high.
While our algorithm performs well for a range of seed sizes Qi,

a question remains on how to automatically select a good value of
Qi for a particular domain adaptation problem. Initial experiments
indicate that, in most cases, we can select an acceptable value Qi
for the task using a technique similar to the Pdiv model selection
technique described in [10]. A forthcoming publication will detail
these results.
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