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Diagnosing	
  Myopathy	
  

 Myopathy	
  (muscle	
  disease):	
  	
  
neuromuscular	
  disorder	
  causing	
  
muscle	
  weakness	
  due	
  to	
  
dysfuncBoning	
  skeletal	
  muscle	
  
fibers	
  

 Many	
  forms	
  of	
  myopathy	
  
idenBfied	
  
  Some	
  serious	
  and	
  oQen	
  debilitaBng	
  
condiBons	
  (e.g.,	
  muscular	
  dystrophy)	
  

 Difficult	
  to	
  accurately	
  diagnose	
  
and	
  treat	
  
  Can	
  be	
  inherited	
  or	
  acquired	
  
  MulBple	
  pathologies	
  can	
  be	
  present	
  

  Early	
  detecBon	
  can	
  ease	
  paBent	
  
suffering	
  and	
  reduce	
  medical	
  
expenses	
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Gowers'	
  sign:	
  paBent	
  uses	
  arms/hands	
  to	
  reach	
  an	
  
upright	
  posiBon	
  due	
  to	
  weakness	
  of	
  the	
  hip/thigh	
  
muscles	
  common	
  to	
  several	
  forms	
  of	
  myopathy	
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Our	
  ContribuBons	
  

 Proof	
  of	
  concept	
  of	
  a	
  novel	
  methodology	
  for	
  
classifica(on	
  and	
  diagnosis	
  of	
  myopathy	
  from	
  
electromyograph	
  (EMG)	
  signals	
  

 Frequency	
  domain	
  analysis	
  of	
  EMG	
  signals	
  measured	
  
at	
  full	
  muscle	
  contracBon	
  

 Consider	
  mulBple	
  subjects	
  and	
  mulBple	
  muscles	
  
 DMMH	
  paper	
  results:	
  classificaBon	
  of	
  EMG	
  traces	
  
from	
  healthy	
  paBents	
  vs.	
  paBents	
  with	
  myopathy	
  

 Our	
  recent	
  results:	
  predicBng	
  the	
  severity	
  of	
  
myopathy	
  from	
  EMG	
  signals	
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Intramuscular	
  Electromyography	
  (EMG)	
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Physician	
  inserts	
  an	
  electrode	
  into	
  muscle	
  
Bssue	
  and	
  observes	
  electrical	
  acBvity	
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Standard	
  technique	
  for	
  diagnosing	
  neuromuscular	
  disease	
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Audible	
  characteris(cs	
  of	
  EMG	
  trace	
  
are	
  diagnos(c	
  for	
  different	
  pathologies	
  



Figure 35-1 Neurogenic and myopathic diseases have different effects on the motor unit.

A. Typical activity in a normal muscle. The muscle fibers innervated by a single motor neuron are not usually adjacent to one another. When a motor 
unit potential is recorded by a needle electrode inserted into the muscle. The highly effective transmission at the neuromuscular junction ensures that 
each muscle fiber innervated by the same neuron will contract in response to an action potential.

B. When motor neurons are diseased the number of motor units under voluntary control is reduced. The muscle fibers supplied by the degenerating 
motor neuron (cell B) become denervated and atrophic. However, the surviving neuron (cell A) has sprouted an axonal branch that has reinnervated 
one of the denervated muscle fibers. The electromyogram shows larger than normal motor unit potentials (middle trace) because the surviving motor 
neuron innervates more than the usual number of muscle fibers (it also innervates formerly denervated fibers). Axons of the surviving motor neuron fire 
spontaneously even at rest, giving rise to fasciculations (top trace), another characteristic of motor neuron disease. Under conditions of maximal 
contraction the interference pattern is reduced (lower trace).

C. When muscle is diseased the number of muscle fibers in each motor unit is reduced. Some muscle fibers innervated by the two motor neurons shrink 
and become nonfunctional. In the electromyogram the motor unit potentials do not decrease in number but are smaller and of shorter duration than 
normal.

Laboratory Criteria Also Assist in Making the Diagnosis
One test that helps to distinguish myopathic from neurogenic diseases is the measurement of serum enzyme activities. The sarcoplasm of muscle is rich 
in soluble enzymes that are also found in low concentrations in the serum. In many muscle diseases the concentration of these sarcoplasmic enzymes in 
serum is elevated, presumably because the diseases affect the integrity of surface 
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membranes of the muscle that ordinarily keep soluble enzymes within the sarcoplasm. Slight increases in the serum levels of these enzymes are also 
found in some denervating diseases, but the level of the increase is usually much less than in a myopathy. The enzyme activity most commonly used for 
diagnosing myopathy is creatine kinase (CK), an enzyme that phosphorylates creatine and is important in the energy metabolism of muscle. Assays for 
serum glutamic-oxaloacetictransaminase (SGOT) and lactate dehydrogenase (LDH) are also used.
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  signal	
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  muscle	
  contracBon	
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Increased	
  high	
  frequency	
  “noise”	
  

Small,	
  polyphasic	
  
MUAPs	
  

Motor	
  Unit	
  	
  
Ac(on	
  Poten(als	
  

(MUAPs)	
  



Common	
  Approach:	
  	
  
MUAP	
  DecomposiBon	
  

Issues	
  
  Assumes:	
  
I.  Temporally-­‐regular	
  firing	
  pa\ern	
  (i.e.,	
  

evenly-­‐spaced	
  MUAPs)	
  
II.  Separable	
  MUAPs	
  

  Observed	
  MUAP	
  firing	
  pa\ern	
  
decreasingly	
  regular	
  with	
  disease	
  
severity	
  	
  

  Borderline	
  pathologies	
  difficult	
  to	
  
diagnose	
  at	
  low	
  contracBon	
  
  At	
  low	
  contracBon	
  levels:	
  MUAPs	
  more	
  

separable	
  	
  
  SeparaBng	
  individual	
  MUAP	
  trains	
  
difficult	
  at	
  high	
  contracBon	
  
  At	
  high	
  contracBon	
  levels:	
  many	
  

MUAPs	
  recruited	
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Raw	
  EMG	
  Signal	
  (low	
  contracBon)	
  

Individual	
  MUAP	
  Trains	
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Example	
  EMG	
  Trace:	
  	
  
DiagnosBc	
  ConsideraBons	
  

  Issue:	
  porBons	
  of	
  EMG	
  signal	
  not	
  diagnosBc	
  due	
  to:	
  

  Solu(on:	
  consider	
  diagnos(c	
  regions	
  idenBfied	
  by	
  physician	
  
  Issue:	
  signal	
  amplitude	
  oQen	
  uninformaBve	
  
  High	
  variability	
  between	
  paBents,	
  muscle	
  contracBon	
  levels	
  
  Captures	
  instrument	
  effects	
  
  Only	
  diagnosBc	
  in	
  severe	
  cases	
  

  Solu(on:	
  classify	
  normalized	
  EMG	
  signals	
  in	
  the	
  frequency	
  domain	
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Our	
  Approach:	
  
EMG	
  ClassificaBon	
  in	
  the	
  Frequency	
  Domain	
  

 Sample	
  =	
  fixed-­‐duraBon	
  slice	
  
of	
  length	
  ns	
  seconds	
  from	
  a	
  
parBcular	
  diagnosBc	
  region	
  

 Normaliza(on:	
  each	
  Bme-­‐
domain	
  sample	
  x	
  =	
  x/||x||2	
  

 Classifica(on:	
  	
  
1.  Balance	
  the	
  number	
  of	
  samples	
  

from	
  each	
  class	
  via	
  sampling	
  with	
  
replacement	
  

2.  5-­‐fold	
  cross-­‐validaBon:	
  
I.  Split	
  samples	
  into	
  train/test	
  

(50/50%)	
  sets	
  via	
  straBfied	
  random	
  
sampling	
  

II.  Ensure	
  train/test	
  sets	
  consist	
  of	
  
samples	
  from	
  different	
  subjects	
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EMG	
  traces	
  

Physician	
  labels	
  diagnosBc	
  regions	
  
of	
  each	
  trace	
  according	
  to	
  severity	
  

Cut	
  labeled	
  diagnosBc	
  regions	
  into	
  
ns-­‐second	
  Bme-­‐domain	
  samples	
  	
  

Normalize	
  each	
  Bme-­‐domain	
  
sample	
  

Compute	
  FFT	
  of	
  each	
  Bme-­‐
domain	
  sample	
  

Classify	
  frequency-­‐domain	
  samples	
  

Sample	
  class	
  
predicBons	
  



Experimental	
  Data	
  

 Myo1=borderline	
  myopathy,	
  Myo4=severe	
  myopathy	
  
 Myo*=	
  set	
  of	
  all	
  	
  (Myo1,….,Myo4)	
  data	
  
 DMMH	
  paper	
  results:	
  classify	
  samples	
  into	
  Normal	
  vs.	
  
Myo*	
  classes	
  

 Our	
  recent	
  results:	
  	
  classify	
  samples	
  into	
  Normal	
  vs.	
  
Borderline/Mild	
  (MyoLo)	
  vs.	
  Moderate/Severe	
  
(MyoHi)	
  classes	
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MyoLo MyoHi 

47.5 (4) 100.5 (4) 

Muscle # # sec Normal Myo1 Myo2 Myo3 Myo4 Myo*
Biceps 4 51.0 (4) 0.0 (0) 7.5 (1) 0.0 (0) 35.0 (2) 8.5 (1) 51.0 (4)
Deltoid 6 53.0 (6) 26.0 (3) 8.5 (1) 0.0 (0) 18.5 (2) 0.0 (0) 53.0 (6)
Triceps 2 18.5 (2) 0.0 (0) 0.0 (0) 10.0 (1) 0.0 (0) 8.5 (1) 18.5 (2)
VL 3 51.5 (3) 0.0 (0) 0.0 (0) 21.5 (1) 12.0 (1) 18.0 (1) 51.5 (3)
Total 15 174.0 (8) 26.0 (3) 16.0 (2) 31.5 (2) 65.5 (5) 35.0 (3) 148.0 (6)

Table 1: Summary of EMG data for each muscle with sample duration ns = 0.5. The number of seconds of data
for each class is provided. Values in parenthesis give the number of unique subjects for each muscle with respect
to each class.



 Goal:	
  evaluate	
  predicBon	
  accuracy	
  vs.	
  sample	
  length	
  ns	
  
 Classifier:	
  linear	
  Support	
  Vector	
  Machine	
  (SVM)	
  
 Results:	
  

 Accuracy	
  increases	
  with	
  sample	
  length	
  
  Limited	
  data:	
  #	
  samples	
  decreases	
  with	
  sample	
  length	
  =>	
  
increased	
  variance	
  in	
  predicBons	
  (e.g.,	
  ns=1	
  vs.	
  ns=2)	
  

DMMH	
  Paper	
  Results:	
  	
  
Normal	
  vs.	
  Myo*	
  Accuracy	
  vs.	
  Sample	
  Length	
  (ns)	
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ferences between measurements on different muscles 
and different subjects at varying contraction levels 
while retaining other differences of the waveforms. We 
then map each normalized sample into the frequency 
domain using the Fast Fourier Transform in 
MATLAB. We discard the symmetric portion of the 
frequency-domain samples, resulting in sample vectors 
of dimensionality m/2. Table 1 gives a summary of the 
samples we consider with sample duration ns = 0.5 sec. 

3.2 Classification 

In this study, we consider the problem of classify-
ing the frequency-domain samples as Normal or My-
opathic. To achieve this, we group all of the samples 
labeled Myo1-Myo4 into a single superclass Myo*. As 
table 5 shows, several muscles do not have any repre-
sentative samples from some classes, and the remain-
ing muscles are poorly represented in terms of the 
number of samples – particularly the Normal and the 
borderline myopathy (Myo1) classes, which represent 
only 14.94% and 9.2% of the total samples, respec-
tively. To help mitigate this issue, we first balance the 
sampling distributions of the five (Normal, Myo1-
Myo4) classes by augmenting the training data with 
Nresampj = Nmax ! Nj samples, sampled with re-
placement, from the training samples of each class j, 
where Nmax is the number of samples of the class with 
the maximum number of samples, and Nj is the number 
of samples in class j. This balancing step ensures that 
samples of varying severity are equally represented, 
but leads to a sampling bias between the Normal vs. 
Myo* superclass. Consequently, we perform an addi-
tional balancing step by adding Nnormal = Nall ! 
NMyo* samples from the normal class to the training 
set, as before, sampling with replacement, where Nall 
is the total number of samples, and NMyo* is the num-
ber of samples in the Myo* class. After balancing, we 
have a total of 524 samples for the Normal and Myo* 
classes, with the Myo* class consisting of 131 samples 
of each of the Myo1-Myo4 classes, respectively.   

EMG signals may vary between different subjects 
or on different muscles. Consequently, it is crucial to 
evaluate classification accuracy when data from differ-
ent subjects and/or muscles is used as training and test 
data. To achieve this, after balancing the samples as 
described above, we perform ten cross-validation 
splits, where in each split we use data from half of the 
subjects for test data, and divide the remaining samples 

into training (3/8th of the total samples) and validation 
(1/8th of the total samples) sets. We ensure by random 
stratified sampling that the training, test and validation 
sets each contain instances from each of the Normal 
and Myo* classes and from each muscle group. The 
classifier we use is a linear Support Vector Machine 
(SVM). We select the SVM regularization parameter C 
from the set {0.01, 0.1, 1, 10, 100, 1000} that yields 
the highest accuracy on the validation set. We report 
the mean and standard deviation of classification accu-
racies produced on the test data in each split. 

4 Classification Results and Evaluation 

4.1  Classification Accuracy vs. Sample Duration 
 
We first evaluate the classification accuracy with 

respect to the sample duration ns. We consider ns val-
ues in the set {0.05, 0.1, 0.2, 0.5, 1, 2}. Table 2 gives 
the number of balanced samples and the dimensional-
ity m of each sample for each value of ns, and the cor-
responding mean and standard deviation of classifica-
tion accuracies across the ten cross-validation splits. 

We observe that classification accuracy increases with 
increasing sample duration. The standard deviation 
also typically decreases, with the exception of ns=2, 
where the high dimensionality and small quantity of 
samples produce slightly less stable results. However, 
this generally suggests that longer sample durations are 
desirable, despite the high dimensionality of the result-
ing feature space. Additionally, our results indicate that 
it is possible to predict the presence or absence of my-
opathies from relatively short portions of a full EMG 
trace. 

4.2 Per-class, Per-muscle and Per-subject Eval-
uation 

We now evaluate the performance of our method-
ology on the individual classes, muscles and subjects 
we consider in this work. For this evaluation we fix the 

 
Table 1: Summary of EMG data for each muscle with sample duration ns = 0.5. The total number of seconds of data for each class is provided. 

Values in parenthesis give the number of unique subjects for each muscle with respect to each class. 

 
ns  # samp m/2 Accuracy (std.dev.) 

0.0
5 

10528 1600 0.760 (0.058) 
0.1 5256 3200 0.815 (0.059) 
0.2 2616 8000 0.878 (0.042) 
0.5 1048 16000 0.904 (0.033) 

1 512 32000 0.966 (0.028) 
2 256 64000 0.971 (0.041) 

Table 2: Number of balanced samples and sample dimensionality 
(N/2) with respect to sample duration ns, and corresponding mean 

classification  accuracy and standard deviation accuracies. 

Dims 
0.05 



sample duration ns to 0.5, as this duration consists of a 
reasonable number of samples (1024) to evaluate, at 
fairly high dimensionality (16000 dimensions/sample) 
and yields very good classification accuracies (90.4% 
average).  

With respect to the Normal vs. Myo* classes, we 
observe considerably higher classification accuracy on 
the Myo* class (mean=0.959, stddev=0.023) than on 
the normal class (mean=0.822, stddev=0.070). This is 
due to the fact that our data includes significantly 
fewer subjects with normal conditions. When we con-
sider individual muscles (Table 3), we observe that the 
samples from the biceps and deltoid muscles tend to be 
misclassified more often than the triceps and VL mus-
cles. A possible reason for this is that the biceps and 
deltoid muscles appear similar to one another in terms 
of EMG signals, but appear different from the triceps 
and VL muscles. This is also suggested by the results 
in Bischoff et al. [1], but further investigation on addi-
tional data is necessary to confirm this hypothesis in 
our case.  

Table 4 gives the classification accuracies for the 

individual subjects and their respective traces. Most 
notable are the results for subject S10, whose biceps 
and deltoid traces are classified with 28.5 and 16.1% 
less than their respective mean muscle accuracies (as 
shown in Table 3). Subject S10 represents a case 
where some muscles exhibit no observable pathology, 
while other muscles show signs of myopathy. While it 
is difficult to state conclusively without data from ad-
ditional patients with similarly mixed pathologies, ac-
cording to the physician, this case may be a result of a 
borderline myopathy, and the training labels may need 
revision once sufficient evidence is available. 

5 Discussion and Future Work 

In this work, we evaluated a novel methodology 
for classifying contiguous, fixed-duration samples of 
EMG signals in the frequency domain. By considering, 
as training samples, Fourier transforms of normalized, 

fixed-length segments of diagnostic regions of the full 
signals (as opposed to extracted MUAPs)  measured at 
full contraction, we demonstrated high average gener-
alization performance by a linear SVM classifier 
across individual subjects and different muscles. The 
average classification accuracy on test data increases 
from 80% to 97% with the duration of the samples (0.1  
to 2 sec, respectively) while the reliability, determined 
from ten cross-validation folds, simultaneously in-
creases (standard deviation decreases). Our analysis 
also suggests that detecting the presence of myopathy 
can be accomplished with very short duration samples 
of a full EMG trace.  

The long-term, primary goal of our work is to de-
velop a system that captures the physician’s capability 
to diagnose a variety of neuromuscular disorders from 
EMG data, as well as to distinguish among the severity 
degrees of diseases such as the classes of myopathies 
listed in Section 2. While our classification accuracies 
are fairly high, this is of course a two-class case. Clas-
sifying the samples according to their severities is a 
more challenging task, and will require more elaborate 
and sophisticated experiments.  

We also aim to classify EMG signals of patients 
with neurogenic disorders using our methodology. 
Because our methodology yields comparable results to 
previous analyses considering EMG data from my-
opathic and neurogenic diseases (e.g., 6), and based 
upon our preliminary experiments with 5 classes, we 
anticipate our method will generalize well to such sce-
narios. 

While the results presented here are encouraging, 
much additional analysis and development is needed in 
order to achieve the above goals and to make our sys-
tem useful for clinicians. This includes systematically 
designed experiments with increasing amounts and 
complexity of data (increased variety of subjects, mus-
cles, diseases), testing increasingly sophisticated clas-
sification techniques to better align with real-life cir-
cumstances such as highly imbalanced sample sets, 
and intelligent identification of feature subsets neces-
sary for producing high-quality (high-accuracy and 
high-fidelity) classifications. For fully automated proc-
essing, developing techniques to segment an EMG 
signal into diagnostic and non-diagnostic regions, or to 
incorporate learning constraints to identify various 
non-disease-related conditions are also necessary.  
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Bicep Deltoid Tricep VL  
0.907 (0.087) 0.852 (0.072) 1.000 (0.000) 1.000 (0.000) 

Table 3: Per-muscle accuracies from all subjects for ns=0.5 

Subject Average Trace Class Trace Accuracy 
S02 0.936 (0.050) Biceps Myo* 0.936 (0.050) 
S03 0.958 (0.037) Deltoid Myo* 0.937 (0.055) 

  Triceps Myo* 1.000 (0.000) 
S04 1.000 (0.000) VL Myo* 1.000 (0.000) 
S07 0.986 (0.022) Biceps Myo* 0.972 (0.043) 

  Deltoid Myo* 0.984 (0.025) 
  VL Myo* 1.000 (0.000) 

S08 0.888 (0.007) Deltoid Nor 0.888 (0.007) 
S09 0.975 (0.035) Biceps Myo* 0.951 (0.068) 

  Deltoid Myo* 1.000 (0.000) 
  Triceps Myo* 1.000 (0.000) 

S10 0.789 (0.128) Biceps Myo* 0.622 (0.171) 
  Deltoid Nor 0.691 (0.056) 
  VL Myo* 1.000 (0.000) 

S15 0.852 (0.028) Deltoid Nor 0.852 (0.028) 
Table 4: Per-subject/trace classification accuracies for ns=0.5. 
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