Classification and Diagnosis of Myopathy from EMG Signals

Brian Bue¹, Erzsébet Merényi^{1,2}, James Killian³

Department of Electrical and Computer Engineering¹, Statistics², Rice University {bbue,erzsebet}@rice.edu

Department of Neurology³, Baylor College of Medicine jkillian@bcm.edu

RICE

BCM

Diagnosing Myopathy

- Myopathy (muscle disease): neuromuscular disorder causing muscle weakness due to dysfunctioning skeletal muscle fibers
- Many forms of myopathy identified
 - Some serious and often debilitating conditions (e.g., muscular dystrophy)
- Difficult to accurately diagnose and treat
 - Can be inherited or acquired
 - Multiple pathologies can be present
- Early detection can ease patient suffering and reduce medical expenses

Gowers' sign: patient uses arms/hands to reach an upright position due to weakness of the hip/thigh muscles common to several forms of myopathy

Our Contributions

- Proof of concept of a novel methodology for classification and diagnosis of myopathy from electromyograph (EMG) signals
- Frequency domain analysis of EMG signals measured at full muscle contraction
- Consider multiple subjects and multiple muscles
- DMMH paper results: classification of EMG traces from healthy patients vs. patients with myopathy
- Our recent results: predicting the severity of myopathy from EMG signals

Intramuscular Electromyography (EMG)

Diagnosing Myopathy from EMG Measurements

B. Bue, E. Merényi, J. Killian

Common Approach: MUAP Decomposition

Issues

- Assumes:
 - I. Temporally-regular firing pattern (i.e., evenly-spaced MUAPs)
- II. Separable MUAPs
- Observed MUAP firing pattern decreasingly regular with disease severity
- Borderline pathologies difficult to diagnose at low contraction
 - At *low* contraction levels: MUAPs more separable
- Separating individual MUAP trains difficult at high contraction
 - At high contraction levels: many MUAPs recruited

Example EMG Trace: Diagnostic Considerations

Issue: portions of EMG signal not diagnostic due to:

- Solution: consider diagnostic regions identified by physician
- Issue: signal amplitude often uninformative
 - High variability between patients, muscle contraction levels
 - Captures instrument effects
 - Only diagnostic in severe cases
- Solution: classify normalized EMG signals in the frequency domain

Our Approach: EMG Classification in the Frequency Domain

- Sample = fixed-duration slice of length *ns* seconds from a particular diagnostic region
- Normalization: each timedomain sample x = x/||x||₂
- Classification:
 - 1. Balance the number of samples from each class via sampling with replacement
 - 2. 5-fold cross-validation:
 - Split samples into train/test (50/50%) sets via stratified random sampling
 - II. Ensure train/test sets consist of samples from different subjects

Experimental Data

				MyoLo		MyoHi		
Muscle	#	$\# \sec$	Normal	Myo1	Myo2	Myo3	Myo4	Myo*
Biceps	4	51.0(4)	0.0(0)	7.5(1)	0.0~(0)	35.0(2)	8.5(1)	51.0(4)
Deltoid	6	53.0~(6)	26.0(3)	8.5(1)	0.0~(0)	18.5(2)	0.0~(0)	53.0~(6)
Triceps	2	18.5(2)	0.0~(0)	0.0~(0)	10.0(1)	0.0~(0)	8.5(1)	18.5(2)
VL	3	51.5~(3)	0.0~(0)	0.0~(0)	21.5(1)	12.0(1)	18.0(1)	51.5(3)
Total	15	174.0(8)	26.0(3)	16.0(2)	31.5(2)	65.5(5)	35.0(3)	148.0(6)
47.5(4)				5(4)	100.			

- Myo1=borderline myopathy, Myo4=severe myopathy
- Myo*= set of all (Myo1,...,Myo4) data
- DMMH paper results: classify samples into Normal vs. Myo* classes
- Our recent results: classify samples into Normal vs. Borderline/Mild (MyoLo) vs. Moderate/Severe (MyoHi) classes

DMMH Paper Results:

Normal vs. Myo* Accuracy vs. Sample Length (ns)

- **Goal:** evaluate prediction accuracy vs. sample length *ns*
- Classifier: linear Support Vector Machine (SVM)
- Results:

ns	# samp	Dims	Accuracy (std.dev.)
0.05	10528	1600	0.760 (0.058)
0.1	5256	3200	0.815 (0.059)
0.2	2616	8000	0.878 (0.042)
0.5	1048	16000	0.904 (0.033)
1	512	32000	0.966 (0.028)
2	256	64000	0.971 (0.041)

- Accuracy increases with sample length
- Limited data: # samples decreases with sample length => increased variance in predictions (e.g., ns=1 vs. ns=2)

DMMH Paper Results: Normal vs. Myo* Per-trace Accuracies

Subj.	Average	Muscle	Class	Trace Accuracy
S02	0.936 (0.050)	Biceps	Myo*	0.936 (0.050)
S03	0.958 (0.037)	Deltoid	Myo*	0.937 (0.055)
		Triceps	Myo*	1.000 (0.000)
S04	1.000 (0.000)	VL	Myo*	1.000 (0.000)
S07	0.986 (0.022)	Biceps	Myo*	0.972 (0.043)
		Deltoid	Myo*	0.984 (0.025)
		VL	Myo*	1.000 (0.000)
S08	0.888 (0.007)	Deltoid	Nor	0.888 (0.007)
S09	0.975 (0.035)	Biceps	Myo*	0.951 (0.068)
		Deltoid	Myo*	1.000 (0.000)
		Triceps	Myo*	1.000 (0.000)
S10	0.789 (0.128)	Biceps	Myo*	0.622 (0.171)
		Deltoid	Nor	0.691 (0.056)
		VL	Myo*	1.000 (0.000)
S15	0.852 (0.028)	Deltoid	Nor	0.852 (0.028)

Our Recent Results: Predicting Disease Severity

- Goal: predict disease severity; Normal vs. MyoLo = (Myo1,Myo2) vs. MyoHi=(Myo3,Myo4)
- Classifiers: Linear SVM vs. Neural Network classifier of Merényi et al., [1993]

Current Results:

- Linear SVM=63.51% (stddev: 8.6%) accuracy
 - Most mispredictions between MyoLo vs. MyoHi classes, normal accuracy 85-90%
 - Sample balancing improves overall prediction accuracy
- Neural Network=78.85% (stddev: 3.8%) accuracy
 - MyoLo and MyoHi accuracy 80-100%, normal accuracy 50-80%
 - Sample balancing does **not** affect accuracy; majority classes (MyoLo, MyoHi) learned well, poor generalization on minority (normal) class
 - Expect to improve results with more sophisticated balancing schemes

Conclusions and Future Work

- Frequency-space analysis enables classification of EMG signals measured at full-contraction
 - Requires no MUAP segmentation
 - Capable of discriminating normal vs. myopathic traces
- Validation in progress:
 - Incorporating additional normal traces from new subjects
 - Achieving similar results for fixed muscle groups
- Feature-selection techniques could potentially improve our results and aid interpretation
 - Example: identifying diagnostic frequencies for particular pathologies

References

- Rowland, "Diseases of the Motor Unit," in Principles of Neural Science, Keller et al. Eds, McGraw Hill, 2000.
- E. Merényi, R. B. Singer, and W. H. Farrand, "Classification of the LCVF AVIRIS test site with a Kohonen Artificial Neural Network," Summaries of the 4th Annual JPL Airborne Geoscience Workshop, 1993.
- S.H. Nawab, R.P. Wotiz, C.J. De Luca, "Decomposition of Indwelling EMG Signals," Journal of Applied Physiology, 105: 700-710, Aug. 2008.