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Diagnosing	  Myopathy	  

 Myopathy	  (muscle	  disease):	  	  
neuromuscular	  disorder	  causing	  
muscle	  weakness	  due	  to	  
dysfuncBoning	  skeletal	  muscle	  
fibers	  

 Many	  forms	  of	  myopathy	  
idenBfied	  
  Some	  serious	  and	  oQen	  debilitaBng	  
condiBons	  (e.g.,	  muscular	  dystrophy)	  

 Difficult	  to	  accurately	  diagnose	  
and	  treat	  
  Can	  be	  inherited	  or	  acquired	  
  MulBple	  pathologies	  can	  be	  present	  

  Early	  detecBon	  can	  ease	  paBent	  
suffering	  and	  reduce	  medical	  
expenses	  
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Gowers'	  sign:	  paBent	  uses	  arms/hands	  to	  reach	  an	  
upright	  posiBon	  due	  to	  weakness	  of	  the	  hip/thigh	  
muscles	  common	  to	  several	  forms	  of	  myopathy	  	  
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Our	  ContribuBons	  

 Proof	  of	  concept	  of	  a	  novel	  methodology	  for	  
classifica(on	  and	  diagnosis	  of	  myopathy	  from	  
electromyograph	  (EMG)	  signals	  

 Frequency	  domain	  analysis	  of	  EMG	  signals	  measured	  
at	  full	  muscle	  contracBon	  

 Consider	  mulBple	  subjects	  and	  mulBple	  muscles	  
 DMMH	  paper	  results:	  classificaBon	  of	  EMG	  traces	  
from	  healthy	  paBents	  vs.	  paBents	  with	  myopathy	  

 Our	  recent	  results:	  predicBng	  the	  severity	  of	  
myopathy	  from	  EMG	  signals	  
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Intramuscular	  Electromyography	  (EMG)	  
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Physician	  inserts	  an	  electrode	  into	  muscle	  
Bssue	  and	  observes	  electrical	  acBvity	  

DMMH	  2013	  

Standard	  technique	  for	  diagnosing	  neuromuscular	  disease	  
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Figure	  credit:	  adam.com	  

Audible	  characteris(cs	  of	  EMG	  trace	  
are	  diagnos(c	  for	  different	  pathologies	  



Figure 35-1 Neurogenic and myopathic diseases have different effects on the motor unit.

A. Typical activity in a normal muscle. The muscle fibers innervated by a single motor neuron are not usually adjacent to one another. When a motor 
unit potential is recorded by a needle electrode inserted into the muscle. The highly effective transmission at the neuromuscular junction ensures that 
each muscle fiber innervated by the same neuron will contract in response to an action potential.

B. When motor neurons are diseased the number of motor units under voluntary control is reduced. The muscle fibers supplied by the degenerating 
motor neuron (cell B) become denervated and atrophic. However, the surviving neuron (cell A) has sprouted an axonal branch that has reinnervated 
one of the denervated muscle fibers. The electromyogram shows larger than normal motor unit potentials (middle trace) because the surviving motor 
neuron innervates more than the usual number of muscle fibers (it also innervates formerly denervated fibers). Axons of the surviving motor neuron fire 
spontaneously even at rest, giving rise to fasciculations (top trace), another characteristic of motor neuron disease. Under conditions of maximal 
contraction the interference pattern is reduced (lower trace).

C. When muscle is diseased the number of muscle fibers in each motor unit is reduced. Some muscle fibers innervated by the two motor neurons shrink 
and become nonfunctional. In the electromyogram the motor unit potentials do not decrease in number but are smaller and of shorter duration than 
normal.

Laboratory Criteria Also Assist in Making the Diagnosis
One test that helps to distinguish myopathic from neurogenic diseases is the measurement of serum enzyme activities. The sarcoplasm of muscle is rich 
in soluble enzymes that are also found in low concentrations in the serum. In many muscle diseases the concentration of these sarcoplasmic enzymes in 
serum is elevated, presumably because the diseases affect the integrity of surface 
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membranes of the muscle that ordinarily keep soluble enzymes within the sarcoplasm. Slight increases in the serum levels of these enzymes are also 
found in some denervating diseases, but the level of the increase is usually much less than in a myopathy. The enzyme activity most commonly used for 
diagnosing myopathy is creatine kinase (CK), an enzyme that phosphorylates creatine and is important in the energy metabolism of muscle. Assays for 
serum glutamic-oxaloacetictransaminase (SGOT) and lactate dehydrogenase (LDH) are also used.
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membranes of the muscle that ordinarily keep soluble enzymes within the sarcoplasm. Slight increases in the serum levels of these enzymes are also 
found in some denervating diseases, but the level of the increase is usually much less than in a myopathy. The enzyme activity most commonly used for 
diagnosing myopathy is creatine kinase (CK), an enzyme that phosphorylates creatine and is important in the energy metabolism of muscle. Assays for 
serum glutamic-oxaloacetictransaminase (SGOT) and lactate dehydrogenase (LDH) are also used.

EMG	  signal	  w.r.t.	  muscle	  contracBon	  
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Diagnosing	  Myopathy	  from	  EMG	  Measurements	  
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Increased	  high	  frequency	  “noise”	  

Small,	  polyphasic	  
MUAPs	  

Motor	  Unit	  	  
Ac(on	  Poten(als	  

(MUAPs)	  



Common	  Approach:	  	  
MUAP	  DecomposiBon	  

Issues	  
  Assumes:	  
I.  Temporally-‐regular	  firing	  pa\ern	  (i.e.,	  

evenly-‐spaced	  MUAPs)	  
II.  Separable	  MUAPs	  

  Observed	  MUAP	  firing	  pa\ern	  
decreasingly	  regular	  with	  disease	  
severity	  	  

  Borderline	  pathologies	  difficult	  to	  
diagnose	  at	  low	  contracBon	  
  At	  low	  contracBon	  levels:	  MUAPs	  more	  

separable	  	  
  SeparaBng	  individual	  MUAP	  trains	  
difficult	  at	  high	  contracBon	  
  At	  high	  contracBon	  levels:	  many	  

MUAPs	  recruited	  
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Raw	  EMG	  Signal	  (low	  contracBon)	  

Individual	  MUAP	  Trains	  
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Example	  EMG	  Trace:	  	  
DiagnosBc	  ConsideraBons	  

  Issue:	  porBons	  of	  EMG	  signal	  not	  diagnosBc	  due	  to:	  

  Solu(on:	  consider	  diagnos(c	  regions	  idenBfied	  by	  physician	  
  Issue:	  signal	  amplitude	  oQen	  uninformaBve	  
  High	  variability	  between	  paBents,	  muscle	  contracBon	  levels	  
  Captures	  instrument	  effects	  
  Only	  diagnosBc	  in	  severe	  cases	  

  Solu(on:	  classify	  normalized	  EMG	  signals	  in	  the	  frequency	  domain	  
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Our	  Approach:	  
EMG	  ClassificaBon	  in	  the	  Frequency	  Domain	  

 Sample	  =	  fixed-‐duraBon	  slice	  
of	  length	  ns	  seconds	  from	  a	  
parBcular	  diagnosBc	  region	  

 Normaliza(on:	  each	  Bme-‐
domain	  sample	  x	  =	  x/||x||2	  

 Classifica(on:	  	  
1.  Balance	  the	  number	  of	  samples	  

from	  each	  class	  via	  sampling	  with	  
replacement	  

2.  5-‐fold	  cross-‐validaBon:	  
I.  Split	  samples	  into	  train/test	  

(50/50%)	  sets	  via	  straBfied	  random	  
sampling	  

II.  Ensure	  train/test	  sets	  consist	  of	  
samples	  from	  different	  subjects	  
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EMG	  traces	  

Physician	  labels	  diagnosBc	  regions	  
of	  each	  trace	  according	  to	  severity	  

Cut	  labeled	  diagnosBc	  regions	  into	  
ns-‐second	  Bme-‐domain	  samples	  	  

Normalize	  each	  Bme-‐domain	  
sample	  

Compute	  FFT	  of	  each	  Bme-‐
domain	  sample	  

Classify	  frequency-‐domain	  samples	  

Sample	  class	  
predicBons	  



Experimental	  Data	  

 Myo1=borderline	  myopathy,	  Myo4=severe	  myopathy	  
 Myo*=	  set	  of	  all	  	  (Myo1,….,Myo4)	  data	  
 DMMH	  paper	  results:	  classify	  samples	  into	  Normal	  vs.	  
Myo*	  classes	  

 Our	  recent	  results:	  	  classify	  samples	  into	  Normal	  vs.	  
Borderline/Mild	  (MyoLo)	  vs.	  Moderate/Severe	  
(MyoHi)	  classes	  

B.	  Bue,	  E.	  Merényi,	  J.	  Killian	   8	  DMMH	  2013	  

MyoLo MyoHi 

47.5 (4) 100.5 (4) 

Muscle # # sec Normal Myo1 Myo2 Myo3 Myo4 Myo*
Biceps 4 51.0 (4) 0.0 (0) 7.5 (1) 0.0 (0) 35.0 (2) 8.5 (1) 51.0 (4)
Deltoid 6 53.0 (6) 26.0 (3) 8.5 (1) 0.0 (0) 18.5 (2) 0.0 (0) 53.0 (6)
Triceps 2 18.5 (2) 0.0 (0) 0.0 (0) 10.0 (1) 0.0 (0) 8.5 (1) 18.5 (2)
VL 3 51.5 (3) 0.0 (0) 0.0 (0) 21.5 (1) 12.0 (1) 18.0 (1) 51.5 (3)
Total 15 174.0 (8) 26.0 (3) 16.0 (2) 31.5 (2) 65.5 (5) 35.0 (3) 148.0 (6)

Table 1: Summary of EMG data for each muscle with sample duration ns = 0.5. The number of seconds of data
for each class is provided. Values in parenthesis give the number of unique subjects for each muscle with respect
to each class.



 Goal:	  evaluate	  predicBon	  accuracy	  vs.	  sample	  length	  ns	  
 Classifier:	  linear	  Support	  Vector	  Machine	  (SVM)	  
 Results:	  

 Accuracy	  increases	  with	  sample	  length	  
  Limited	  data:	  #	  samples	  decreases	  with	  sample	  length	  =>	  
increased	  variance	  in	  predicBons	  (e.g.,	  ns=1	  vs.	  ns=2)	  

DMMH	  Paper	  Results:	  	  
Normal	  vs.	  Myo*	  Accuracy	  vs.	  Sample	  Length	  (ns)	  
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ferences between measurements on different muscles 
and different subjects at varying contraction levels 
while retaining other differences of the waveforms. We 
then map each normalized sample into the frequency 
domain using the Fast Fourier Transform in 
MATLAB. We discard the symmetric portion of the 
frequency-domain samples, resulting in sample vectors 
of dimensionality m/2. Table 1 gives a summary of the 
samples we consider with sample duration ns = 0.5 sec. 

3.2 Classification 

In this study, we consider the problem of classify-
ing the frequency-domain samples as Normal or My-
opathic. To achieve this, we group all of the samples 
labeled Myo1-Myo4 into a single superclass Myo*. As 
table 5 shows, several muscles do not have any repre-
sentative samples from some classes, and the remain-
ing muscles are poorly represented in terms of the 
number of samples – particularly the Normal and the 
borderline myopathy (Myo1) classes, which represent 
only 14.94% and 9.2% of the total samples, respec-
tively. To help mitigate this issue, we first balance the 
sampling distributions of the five (Normal, Myo1-
Myo4) classes by augmenting the training data with 
Nresampj = Nmax ! Nj samples, sampled with re-
placement, from the training samples of each class j, 
where Nmax is the number of samples of the class with 
the maximum number of samples, and Nj is the number 
of samples in class j. This balancing step ensures that 
samples of varying severity are equally represented, 
but leads to a sampling bias between the Normal vs. 
Myo* superclass. Consequently, we perform an addi-
tional balancing step by adding Nnormal = Nall ! 
NMyo* samples from the normal class to the training 
set, as before, sampling with replacement, where Nall 
is the total number of samples, and NMyo* is the num-
ber of samples in the Myo* class. After balancing, we 
have a total of 524 samples for the Normal and Myo* 
classes, with the Myo* class consisting of 131 samples 
of each of the Myo1-Myo4 classes, respectively.   

EMG signals may vary between different subjects 
or on different muscles. Consequently, it is crucial to 
evaluate classification accuracy when data from differ-
ent subjects and/or muscles is used as training and test 
data. To achieve this, after balancing the samples as 
described above, we perform ten cross-validation 
splits, where in each split we use data from half of the 
subjects for test data, and divide the remaining samples 

into training (3/8th of the total samples) and validation 
(1/8th of the total samples) sets. We ensure by random 
stratified sampling that the training, test and validation 
sets each contain instances from each of the Normal 
and Myo* classes and from each muscle group. The 
classifier we use is a linear Support Vector Machine 
(SVM). We select the SVM regularization parameter C 
from the set {0.01, 0.1, 1, 10, 100, 1000} that yields 
the highest accuracy on the validation set. We report 
the mean and standard deviation of classification accu-
racies produced on the test data in each split. 

4 Classification Results and Evaluation 

4.1  Classification Accuracy vs. Sample Duration 
 
We first evaluate the classification accuracy with 

respect to the sample duration ns. We consider ns val-
ues in the set {0.05, 0.1, 0.2, 0.5, 1, 2}. Table 2 gives 
the number of balanced samples and the dimensional-
ity m of each sample for each value of ns, and the cor-
responding mean and standard deviation of classifica-
tion accuracies across the ten cross-validation splits. 

We observe that classification accuracy increases with 
increasing sample duration. The standard deviation 
also typically decreases, with the exception of ns=2, 
where the high dimensionality and small quantity of 
samples produce slightly less stable results. However, 
this generally suggests that longer sample durations are 
desirable, despite the high dimensionality of the result-
ing feature space. Additionally, our results indicate that 
it is possible to predict the presence or absence of my-
opathies from relatively short portions of a full EMG 
trace. 

4.2 Per-class, Per-muscle and Per-subject Eval-
uation 

We now evaluate the performance of our method-
ology on the individual classes, muscles and subjects 
we consider in this work. For this evaluation we fix the 

 
Table 1: Summary of EMG data for each muscle with sample duration ns = 0.5. The total number of seconds of data for each class is provided. 

Values in parenthesis give the number of unique subjects for each muscle with respect to each class. 

 
ns  # samp m/2 Accuracy (std.dev.) 

0.0
5 

10528 1600 0.760 (0.058) 
0.1 5256 3200 0.815 (0.059) 
0.2 2616 8000 0.878 (0.042) 
0.5 1048 16000 0.904 (0.033) 

1 512 32000 0.966 (0.028) 
2 256 64000 0.971 (0.041) 

Table 2: Number of balanced samples and sample dimensionality 
(N/2) with respect to sample duration ns, and corresponding mean 

classification  accuracy and standard deviation accuracies. 

Dims 
0.05 



sample duration ns to 0.5, as this duration consists of a 
reasonable number of samples (1024) to evaluate, at 
fairly high dimensionality (16000 dimensions/sample) 
and yields very good classification accuracies (90.4% 
average).  

With respect to the Normal vs. Myo* classes, we 
observe considerably higher classification accuracy on 
the Myo* class (mean=0.959, stddev=0.023) than on 
the normal class (mean=0.822, stddev=0.070). This is 
due to the fact that our data includes significantly 
fewer subjects with normal conditions. When we con-
sider individual muscles (Table 3), we observe that the 
samples from the biceps and deltoid muscles tend to be 
misclassified more often than the triceps and VL mus-
cles. A possible reason for this is that the biceps and 
deltoid muscles appear similar to one another in terms 
of EMG signals, but appear different from the triceps 
and VL muscles. This is also suggested by the results 
in Bischoff et al. [1], but further investigation on addi-
tional data is necessary to confirm this hypothesis in 
our case.  

Table 4 gives the classification accuracies for the 

individual subjects and their respective traces. Most 
notable are the results for subject S10, whose biceps 
and deltoid traces are classified with 28.5 and 16.1% 
less than their respective mean muscle accuracies (as 
shown in Table 3). Subject S10 represents a case 
where some muscles exhibit no observable pathology, 
while other muscles show signs of myopathy. While it 
is difficult to state conclusively without data from ad-
ditional patients with similarly mixed pathologies, ac-
cording to the physician, this case may be a result of a 
borderline myopathy, and the training labels may need 
revision once sufficient evidence is available. 

5 Discussion and Future Work 

In this work, we evaluated a novel methodology 
for classifying contiguous, fixed-duration samples of 
EMG signals in the frequency domain. By considering, 
as training samples, Fourier transforms of normalized, 

fixed-length segments of diagnostic regions of the full 
signals (as opposed to extracted MUAPs)  measured at 
full contraction, we demonstrated high average gener-
alization performance by a linear SVM classifier 
across individual subjects and different muscles. The 
average classification accuracy on test data increases 
from 80% to 97% with the duration of the samples (0.1  
to 2 sec, respectively) while the reliability, determined 
from ten cross-validation folds, simultaneously in-
creases (standard deviation decreases). Our analysis 
also suggests that detecting the presence of myopathy 
can be accomplished with very short duration samples 
of a full EMG trace.  

The long-term, primary goal of our work is to de-
velop a system that captures the physician’s capability 
to diagnose a variety of neuromuscular disorders from 
EMG data, as well as to distinguish among the severity 
degrees of diseases such as the classes of myopathies 
listed in Section 2. While our classification accuracies 
are fairly high, this is of course a two-class case. Clas-
sifying the samples according to their severities is a 
more challenging task, and will require more elaborate 
and sophisticated experiments.  

We also aim to classify EMG signals of patients 
with neurogenic disorders using our methodology. 
Because our methodology yields comparable results to 
previous analyses considering EMG data from my-
opathic and neurogenic diseases (e.g., 6), and based 
upon our preliminary experiments with 5 classes, we 
anticipate our method will generalize well to such sce-
narios. 

While the results presented here are encouraging, 
much additional analysis and development is needed in 
order to achieve the above goals and to make our sys-
tem useful for clinicians. This includes systematically 
designed experiments with increasing amounts and 
complexity of data (increased variety of subjects, mus-
cles, diseases), testing increasingly sophisticated clas-
sification techniques to better align with real-life cir-
cumstances such as highly imbalanced sample sets, 
and intelligent identification of feature subsets neces-
sary for producing high-quality (high-accuracy and 
high-fidelity) classifications. For fully automated proc-
essing, developing techniques to segment an EMG 
signal into diagnostic and non-diagnostic regions, or to 
incorporate learning constraints to identify various 
non-disease-related conditions are also necessary.  
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Bicep Deltoid Tricep VL  
0.907 (0.087) 0.852 (0.072) 1.000 (0.000) 1.000 (0.000) 

Table 3: Per-muscle accuracies from all subjects for ns=0.5 

Subject Average Trace Class Trace Accuracy 
S02 0.936 (0.050) Biceps Myo* 0.936 (0.050) 
S03 0.958 (0.037) Deltoid Myo* 0.937 (0.055) 

  Triceps Myo* 1.000 (0.000) 
S04 1.000 (0.000) VL Myo* 1.000 (0.000) 
S07 0.986 (0.022) Biceps Myo* 0.972 (0.043) 

  Deltoid Myo* 0.984 (0.025) 
  VL Myo* 1.000 (0.000) 

S08 0.888 (0.007) Deltoid Nor 0.888 (0.007) 
S09 0.975 (0.035) Biceps Myo* 0.951 (0.068) 

  Deltoid Myo* 1.000 (0.000) 
  Triceps Myo* 1.000 (0.000) 

S10 0.789 (0.128) Biceps Myo* 0.622 (0.171) 
  Deltoid Nor 0.691 (0.056) 
  VL Myo* 1.000 (0.000) 

S15 0.852 (0.028) Deltoid Nor 0.852 (0.028) 
Table 4: Per-subject/trace classification accuracies for ns=0.5. 
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Our	  Recent	  Results:	  	  
PredicBng	  Disease	  Severity	  

 Goal:	  predict	  disease	  severity;	  Normal	  vs.	  	  MyoLo	  =	  
(Myo1,Myo2)	  vs.	  MyoHi=(Myo3,Myo4)	  

 Classifiers:	  Linear	  SVM	  vs.	  Neural	  Network	  classifier	  of	  
Merényi	  et	  al.,	  [1993]	  

 Current	  Results:	  	  
  Linear	  SVM=63.51%	  (stddev:	  8.6%)	  accuracy	  
  Most	  mispredicBons	  between	  MyoLo	  vs.	  MyoHi	  classes,	  	  
normal	  accuracy	  85-‐90%	  

  Sample	  balancing	  improves	  overall	  predicBon	  accuracy	  
 Neural	  Network=78.85%	  (stddev:	  3.8%)	  accuracy	  
  MyoLo	  and	  MyoHi	  accuracy	  80-‐100%,	  normal	  accuracy	  50-‐80%	  
  Sample	  balancing	  does	  not	  affect	  accuracy;	  majority	  classes	  (MyoLo,	  
MyoHi)	  learned	  well,	  poor	  generalizaBon	  on	  minority	  (normal)	  class	  

  Expect	  to	  improve	  results	  with	  more	  sophisBcated	  balancing	  schemes	  
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Conclusions	  and	  Future	  Work	  

 Frequency-‐space	  analysis	  enables	  classifica(on	  of	  
EMG	  signals	  measured	  at	  full-‐contrac(on	  	  
 Requires	  no	  MUAP	  segmenta(on	  
 Capable	  of	  discrimina(ng	  normal	  vs.	  myopathic	  traces	  

 ValidaBon	  in	  progress:	  
  IncorporaBng	  addiBonal	  normal	  traces	  from	  new	  subjects	  
 Achieving	  similar	  results	  for	  fixed	  muscle	  groups	  

 Feature-‐selecBon	  techniques	  could	  potenBally	  
improve	  our	  results	  and	  aid	  interpretaBon	  
  Example:	  idenBfying	  diagnosBc	  frequencies	  for	  parBcular	  
pathologies	  

B.	  Bue,	  E.	  Merényi,	  J.	  Killian	   12	  DMMH	  2013	  
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