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Remote Sensing
Imagery from satellite and airborne sensors 
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Figure: Univ. Valencia, IPL

“The vast majority of our current knowledge on the geology of solar system 
  objects has been derived from remote sensing measurements.” [Bell et al. 2001] 

Earth Science Applications: 
‣ Global climate change monitoring
‣ Natural resource management
‣ Assessment of natural hazards
‣ Disaster recovery efforts

Planetary Science Applications: 
‣ Analysis of geologic processes
‣ Finding conditions hospitable to life 

(e.g., liquid water)
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Identifying materials from imagery 
crucial to all of these applications
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Hyperspectral Imagery
J Sign Process Syst

Figure 1 The concept of hyperspectral imaging.

of images corresponding to different wavelength chan-
nels for the same area on the surface of the Earth [2].
For instance, NASA is continuously gathering imagery
data with hyperspectral Earth-observing sensors such
as the Jet Propulsion Laboratory’s Airborne Visible-
Infrared Imaging Spectrometer (AVIRIS) [3], able to
record the visible and near-infrared spectrum (wave-
length region from 0.4 to 2.5 µm) of the reflected light
of an area 2 to 12 km wide and several kilometers long
using 224 spectral bands. The resulting hyperspectral
data cube [4] is a stack of images (see Fig. 1) in which
each pixel (vector) has an associated spectral signature
or ‘fingerprint’ (signal) that uniquely characterizes the
underlying objects, and the resulting data volume typi-
cally comprises several GBs per flight.

The extremely high computational requirements al-
ready introduced by hyperspectral imaging applications
(and the fact that these systems will continue increasing
their spatial and spectral resolutions in the near future)
make them an excellent case study to illustrate the need
for high performance computing (HPC) systems for
image processing [5, 6], and remote sensing applications
[7–9]. In particular, the development of computation-
ally efficient techniques for transforming the massive
amount of hyperspectral data collected on a daily basis
into scientific understanding is critical for space-based
Earth science and planetary exploration [10–12]. The
wealth of spatial and spectral information provided by
last-generation hyperspectral instruments has opened
ground-breaking perspectives in many applications, in-

cluding environmental modeling and assessment, target
detection for military and defense/security purposes,
urban planning and management studies, risk/hazard
prevention and response including wild land fire track-
ing, biological threat detection, monitoring of oil spills
and other types of chemical contamination [13]. Most of
the above-cited applications require analysis algorithms
able to provide a response in (near) real-time, which is
a very ambitious goal since the price paid for the rich
information available from hyperspectral sensors is the
enormous amounts of data that they generate.

Specifically, the utilization of HPC systems in hy-
perspectral signal processing applications has become
more and more widespread in recent years. The idea
developed by the computer science community of us-
ing commercial off-the-shelf computer equipment, clus-
tered together to work as a computational ‘team,’ is a
very attractive solution in remote sensing applications
[14]. This strategy is often referred to as Beowulf-class
cluster computing [15], and has already offered access
to greatly increased computational power at low cost
(commensurate with falling commercial PC costs) in
a number of remote sensing applications [16–19]. In
theory, the combination of commercial forces driving
down cost and positive hardware trends (e.g., CPU
peak power doubling ever 18–24 months, storage ca-
pacity doubling every 12–18 months and networking
bandwidth doubling every 9–12 months) offers super-
computing performance that can now be applied a
much wider range of remote sensing problems.

Although most parallel techniques and systems for
image information processing employed by NASA and
other institutions during the last decade have chiefly
been homogeneous in nature (i.e., they are made up of
identical processing units, thus simplifying the design
of parallel solutions adapted to those systems), a recent
trend in the design of HPC systems for data-intensive
problems is to utilize highly heterogeneous computing
resources [20]. This heterogeneity is seldom planned,
arising mainly as a result of technology evolution over
time and computer market sales and trends. In this
regard, networks of heterogeneous resources can re-
alize a very high level of aggregate performance in
remote sensing applications [21, 22], and the pervasive
availability of these resources has resulted in the cur-
rent notion of Grid computing [23], which endeavors
to make such distributed computing platforms easy to
utilize in different application domains, much like the
World Wide Web has made it easy to distribute web
content. It is expected that grid-based HPC systems will
soon represent the tool of choice for the scientific com-
munity devoted to very high-dimensional data analysis
in remote sensing.
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Captured in hundreds of bands in the visible 
& near-infrared portion of the 
electromagnetic spectrum

Pixels (“spectra”) capture detailed 
material characteristics

Automated methods necessary
to summarize material content 
and flag interesting observations

Figure: [Plaza 2004]

Modern missions produce 
Terabyte-sized datasets 

Each image contains millions 
of high-dimensional pixels
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Objective: develop adaptive, task-specific similarity 
measures for automatic material identification in remotely-
sensed hyperspectral imagery
Contributions: 
‣Material identification with library-based spectral matching 
‣ Intra-domain material identification  
‣Hybrid-LDA: method to combine several similarity measures
‣ Evaluation of Mahalanobis metric learning techniques

‣ Inter-domain material identification  
‣New framework for supervised/unsupervised domain adaptation
‣Comparisons to multitask learning/manifold alignment methods

‣Demonstrated results in practical, real-world classification settings

Thesis Objective and Contributions

4
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What do you mean, theory?

!"#"$%"$&#'()*#+,$,-(./*0+12

Target Test Error
Source Train Error

Intra-domain Material Identification
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Source and target spectra captured under identical 
conditions ⇒ DS = DT 

good source classifier ⇒ good target predictions

Figure: Blitzer, DANLP ‘10
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Figure 1. The reflectance spectrum of alunite convolved to AVIRIS reso- 
lution is shown with the upper hull (dotted line in A) and the 
reflectance divided by the upper hull continuum (B). 
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Material Identification Fundamentals
Absorption Features and Continua 
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Can derive information 
about the chemistry of 
a material from its 
spectral signature

Positions and widths
of absorption bands 
typify materials

Continuum removal 
characterizes 
absorption bands

Kaolinite

Figure modified after: [Clark 90]
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Library-based Spectral Matching
CI vs. CR Distances

8

Distance between CI spectra 

Blue line=target signature, dashed lines=best matchng source signatures

Distance between CR spectra

dCR(xi,xj) =
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Poorly captures 
spectral shape

Absorption features 
not aligned

8Tuesday, April 16, 2013



B. Bue: Adaptive Similarity Measures

Spectral Representation
Continuum-Intact vs. Continuum Removed

9

dCICR(xi,xj , α) = (1− α)dCI(xi,xj) + αdCR(xi,xj)

Solution: measure CI shape and CR absorption features
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Hybrid-Linear Discriminant Analysis (LDA)
Example: Adaptive CICR

10

[Bue and Merényi, IEEE GRSL 2012]

Goal: Learn scalar weight parameter α from labeled data
dCICR(xi,xj , α) = (1− α)dCI(xi,xj) + αdCR(xi,xj)dCICR(xi,xj , α) = (1− α)dCI(xi,xj) + αdCR(xi,xj)

Continuum removal

Measure dCI, dCR 
between-/within-class 

separation 

L2 normalizationL2 normalization

CI spectra 

CR spectra

Select w=[wCI, wCR]
maximizing LDA objective 

Normed CI 
spectra 

Normed CR 
spectra

[1-!,!] = w/||w||1

Pr
ep
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g
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A

LDA objective: calculate 
projection matrix W* maximizing

W∗ = argmax
W

�
|WTMBW|
|WTMWW|

�
Between-class separation

Within-class scatter

Solution: [1-α, α] = w/||w||1
                    w = largest eigenvector
                       of M−1

W MB

[Fisher, 1936] 
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Hybrid-LDA 
Within and Between Class Separation

11

For distance measures d1(xi, xj) and d2(xi, xj):

⇒ d1 vs. d2 compactness 

⇒ d1 vs. d2 separability 

K = # classes, N = # samples, Nj = # samples in jth class, 
µj = jth class mean, µ = mean(µj )

[MB ]1,2 =
1

N

K�

j=1

Njd1(µj ,µ)d2(µj ,µ)[MB ]1,2 = [MB ]2,1 =

[MW ]1,2 =
1

N

K�

j=1

�

i:yi=j

d1(xi,µj)d2(xi,µj)[MW ]1,2 = [MW ]2,1 ==
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Evaluation on Ocean City AVIRIS Image
Minor/Major/Combined Absorption Scenarios
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Minor Absorption Scenario:
‣ 7 classes of flat spectra 

with few absorptions
‣ CR representation 

uninformative (α→0)

Major Absorption Scenario:
‣ 7 classes with several 

deep absorptions
‣ CR representation

discriminative (α→1)

AVIRIS hyperspectral image, 158 spectral bands 

Combined Scenario:
‣ All Major+Minor classes
‣ αMinor ≤ αCombined ≤ αMajor
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Evaluation on Ocean City AVIRIS Image 
LDA vs. Line Search α 

13

9

Fig. 3. α vs. per-class dCICR classification accuracy for minor (top), major (middle) and combined (bottom) absorption classes. Colored
lines indicate per-class accuracies, and the black solid line gives the overall classification accuracy. The magenta vertical bar gives αLS,
and the black vertical bar gives α. The horizontal lines give the CI (red, α = 0) and CR (blue, α = 1) classification accuracies. Because
the CI representation is generally more informative than CR, α values tend towards zero, but larger values occur in cases when the CR
representation provides additional discrimination information (as in the major and combined absorption class scenarios).

quantity (about 50 / class) of training samples are available. We observe the largest performance gains

in the combined scenario, where the dCICR measure can exploit absorption features to separate the classes

belonging to the major and minor absorption scenarios, and also can capitalize on the absorption charac-

teristics of individual classes. dCR performs the worst in all three cases, and is not shown in Figure 4 to

emphasize the performance of the better performing measures.

Determining α using our LDA-based method is significantly less computationally expensive than via

brute force search (αLS). As before, assuming N samples of dimensionality D belonging to K classes,

given the set of (precomputed) class means, a MinDist classifier must compare each signature to each

Curves: average (black) and per-class (colored) accuracy using CICR

dCI accuracy

dCR accuracy

α selected via line search

LDA-based α
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Adaptive Sobolev Metric

14

where

75

dSobolev(xi,xj) =
κ�

l=0

γlαl d
(l)(xi,xj) (5.12)

d(l)(xi,xj) = �x(l)
i − x(l)

j � (5.13)

where d(l) is the Euclidean distance between the lth derivatives of xi and xj, γl are

scaling factors applied to each derivate (described below), and αl are convex weight

parameters (i.e., αl ∈ [0, 1],
�

l αl = 1) determining the contribution of each derivate

in the hybrid measure. When κ = 1, dSobolev reduces to the Euclidean distance (i.e.,

d(0)).

We equalize the contribution of the derivates by setting γl = 1/
�

var(f (l)), where

var
�
f (i)

�
is the sample variance with respect to derivate l. This maps the derivates of

each sample to at most unit variance, and allows us better fine-tune the αl weight

parameters according to data-specific characteristics.

We calculate the vector of weightsα = [α1, . . . ,ακ] using the methodology described

in Section 5.1.1 by extending the MW and MB matrices Equation (5.6) to measure

the within and between class separation for each of the κ derivates, as follows:

MB =





sb(d
(1), d(1)) . . . sb(d

(κ), d(1))

...
. . .

...

sb(d
(1), d(κ)) . . . sb(d

(κ), d(κ))




(5.14)

MW =





sw(d
(1), d(1)) . . . sw(d

(1), d(κ))

...
. . .

...

sw(d
(1), d(κ)) . . . sw(d

(κ), d(κ))




, (5.15)

where sb and sw are computed using Equations (5.7) and (5.9), respectively.

, xi  = l 
th derivative of xi

(l
 
)

γl  = 1/stddev(d(l ))
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Figure 1. The reflectance spectrum of alunite convolved to AVIRIS reso- 
lution is shown with the upper hull (dotted line in A) and the 
reflectance divided by the upper hull continuum (B). 
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Spectral signatures are functional data: REFLECTANCEb(λ)
(b: band, λ: wavelength)

➡High correlation between 
adjacent spectral bands

➡Exploit functional 
characteristics to improve 
classification accuracy

Approach: classify using 
Sobolev metric with Hybrid-LDA 
weights αl 
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Figure modified after: [Clark 90]
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Adaptive Sobolev Metric 
Accuracy vs. Per-derivate Correlation

15
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Feature-weighted (Mahalanobis) Metric Learning

16

Unit Circle!

Goal: Learn task-specific Mahalanobis metric 
          dM(xi, xj) = (xi − xj)T M (xi − xj)
                      = dEuc(ATxi, ATxj),
   M = AAT = n x n positive semidefinite matrix 
   A = n x r matrix

Figure modified after: [Weinberger 07]
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Feature-weighted Metric Learning 
Multiclass LDA for Mahalanobis Metric Learning

17

Feature-weighted, multiclass LDA                        

Regularization: 

MW = (1-γ)I + γMW, γ ∈ [0,1], I = identity matrix*

A = top K-1 eigenvectors of (MW )-1MB  *

where

MB =
1

K

K�

j=1

(µj − µ)(µj − µ)T (between-class separation)

MW =
1

NK

K�

j=1

�

i:yi=j

(xi − µj)(xi − µj)
T

(within-class scatter)

A = argmax
W

�
|WTMBW|
|WTMWW|

�
M=AAT ,
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‣Closed form solution = FAST
‣Performs particularly well for low-rank Mahalanobis metric learning

‣Often more accurate with 
low-rank metrics than...

‣Discriminative Components Analysis 
(DCA, Hoi et al. 2006)

‣ Information Theoretic Metric Learning 
(ITML, Davis et al. 2007)

‣ Large-Margin Nearest Neighbor 
(LMNN, Weinberger et al. 2006) 

‣ Local Fisher Discriminant Analysis 
(LFDA, Sugiyama 2007)

‣Maximally-Collapsing Metric Learning 
(MCML, Globerson et al. 2006)

‣Neighborhood Components Analysis (NCA, Globerson et al. 2005) 

Feature-weighted Metric Learning 
So...why LDA?

18

Applications:
‣ Dimensionality reduction
‣ Visualization (e.g., r=2 or r=3) 
‣ Hybrid-LDA

n

n

n

r
n

rM = ATA

Low-rank Mahalanobis metric learning: 
A ∈ Rn x 

r s.t. r << n
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Figure 6.8 : Average classification accuracy vs. Samples/Class on the Ocean City

Minor (left), Major (middle) and Combined (right) data sets. Error bars give the

standard deviation of the two cross validation folds.

EUC LDA LFDA DCA ITML NCA LMNN MCML Mean

Minor 94.6630 95.7437 94.9773 95.0654 95.1356 91.7682 95.6077 95.7893 94.8438

1.5033 0.8797 1.7054 0.9147 1.1968 2.0639 1.1710 1.3797 1.3518

Major 98.9563 99.0247 99.3011 98.7627 99.3596 97.8212 98.6416 99.0467 98.8642

0.6659 0.6980 0.1782 0.7308 0.4975 0.5267 0.6737 0.7047 0.5844

Combined 97.2308 97.4018 96.7522 94.6506 97.1351 94.9593 96.9959 97.3196 96.5557

0.2166 0.2945 0.4008 0.4513 0.5952 0.4230 0.3406 0.4147 0.3921

Overall 96.9500 97.3901 97.0102 96.1596 97.2101 94.8496 97.0817 97.3852 96.7546

0.7953 0.6241 0.7615 0.6989 0.7632 1.0045 0.7284 0.8330 0.7761

Table 6.4 : Mean and standard deviation of classification accuracies on Ocean City

scenarios using each metric learning algorithm, averaged over all training set sizes.

The best and second best performing algorithms per-image and overall are given in

red and blue italics, respectively.

classification in this scenario. The top three algorithms in this regime, ordered in

terms of descending mean overall accuracy, are MCML (96.6% and 95.1% for Nj = 25

and Nj = 50, respectively), LDA (95.4%, 94.2%), and LMNN (94.2%, 94.8%). ITML

also performs quite well for Nj = 50 (96.6%), but performs rather poorly for the

smallest training set size (90.3%). For the remaining Nj ∈ [100, 150] training set sizes,

we see improved performace over the Euclidean baseline by all of the algorithms except

NCA and MCML. The NCA and MCML results are the most striking in this scenario

– as NCA achieves the least accurate results regardless of sample size, particularly

Minor (mean)
(std. dev.)

Major (mean)
(std. dev.)

Combined (mean)
(std. dev.)

Overall (mean)
(std. dev.)

Feature-weighted Metric Learning 
Ocean City Image Results (n = 158, r = K-1) 
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kNN (k=3) accuracy averaged over training sets of {25,50,100,150,250} samples / class 
for rank = K-1 Mahalanobis matrices (red=best, blue=second best)
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112

EUC LDA LFDA DCA ITML NCA LMNN MCML Mean

3e12 98.3581 98.6337 98.4915 99.0391 98.5892 98.2425 98.6089 98.8337 98.5996
1.3917 1.6557 1.5803 1.1578 1.5929 1.2057 1.2634 1.3729 1.4026

3fb9 88.1268 92.0010 88.6068 88.0427 90.5458 90.3243 90.2225 89.7439 89.7017
1.2670 1.6550 1.4933 0.5077 1.0319 2.0527 0.9556 1.3094 1.2841

863e 97.1800 97.5700 96.7900 96.1567 97.2100 98.3667 97.3000 97.3900 97.2454
1.0842 0.8344 1.4661 1.6358 1.2115 0.4997 1.1785 1.1361 1.1308

Overall 94.5550 96.0682 94.6294 94.4128 95.4483 95.6445 95.3771 95.3225 95.1822
1.2476 1.3817 1.5132 1.1004 1.2788 1.2527 1.1325 1.2728 1.2725

Table 6.5 : Mean and standard deviation of CRISM image classification accuracies
using each metric learning algorithm, averaged over all training set sizes. The best
and second best performing algorithms are given in red and blue italics, respectively.
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Figure 6.13 : Average CPU time (seconds / fold) vs. Samples/Class on CRISM Image
3e12 (left), 3fb9 (middle) and 863e (right) data sets. Y-axis scales are different to
reflect the relative relationships between algorithms for each image. The inset box in
each figure gives a zoomed view of the EUC, LDA, LFDA and DCA CPU times on
the [0, 8] second range. Error bars give the standard deviation of the cross validation
folds.

6.3.5 Comparison to Dimensionality Reduction Techniques

Dimensionality reduction techniques such as feature selection (or feature extraction)

are an analogous approach to Mahalanobis metric learning to assign weights to

individual features according to their data specific relevances. Dimensionality reduction

techniques seek low-dimensional representations that preserve the intrinsic structure

of high-dimensional data. A wide variety of dimensionality reduction and feature

Feature-weighted Metric Learning 
CRISM Imagery Results (n = 231, r = K-1) 
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Figure 6.4 : Top: False color images with locations of labeled classes for CRISM images

3e12 (left), 3fb9 (middle) and 863e (right). Bottom: Corresponding class means and

sample counts for each image. Due to varying capture conditions, spectra representing

the same material species often have dramatically different spectral representations in
each image.

on the 863e image are due to the fact that the test image contains a smaller number

of Kaolinite (670) and Montmorillionite (93) pixels than in the training image, which

are easily confused with other training classes (e.g., Kaolinite vs. FeMg Smectice).

H(class|segment)

Euc LDA ITML

3e12 0.017 / 0.068 0.015 / 0.059 0.019 / 0.066

3fb9 0.088 / 0.380 0.050 / 0.242 0.097 / 0.354

863e 0.047 / 0.004 0.018 / 0.001 0.031 / 0.002

Table 6.1 : Average H(class|segment) for

each image and similarity metric. Green

and red fonts indicate the best and worst

performing metrics, respectively.

Impurity/Purity

Euc LDA ITML

3e12 0.018 / 0.062 0.012 / 0.057 0.020 / 0.060

3fb9 0.066 / 0.296 0.037 / 0.195 0.075 / 0.294

863e 0.068 / 0.032 0.040 / 0.012 0.061 / 0.027

Table 6.2 : Average impurity ratios for

each image and similarity metric. Green

and red fonts indicate the best and worst

performing metrics, respectively.

Figure 6.7 shows a set of segmentation maps for image 863e where the Eu-

clidean and LDA/ITML-learned metrics produced a comparable number of segments.

3e12 3fb9 863e

kNN (k=3) accuracy averaged over training sets of {25,50,100,150,250} samples / class 
for rank = K-1 Mahalanobis matrices (red=best, blue=second best)

3e12 (mean)
(std. dev.)

3fb9 (mean)
(std. dev.)

863e (mean)
(std. dev.)

Overall (mean)
(std. dev.)
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Feature-weighted Metric Learning 
Computation Time / Fold

21

107

spectrally similar and dissimilar classes, it poses a more challenging metric learning

problem in comparison to the other two scenarios. As such, the longer runtimes in

this scenario are not unsurprising. However, the best-performing gradient-descent

algorithm in this scenario, MCML, still performs slightly worse than LDA – which

completes in 1/1900th of the time.
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Figure 6.9 : Average CPU time (seconds / fold) vs. Samples/Class on the Ocean City
Minor (left), Major (middle) and Combined (right) data sets. Y-axis scales differ to
reflect the relative relationships between algorithms for each scenario. The inset box
in each figure gives a zoomed view of the EUC, LDA, LFDA and DCA CPU times
within the [0, 10] second range. Error bars give the standard deviation of the cross
validation folds.

The atypical ITML runtimes can be partially attributed to the fact that both

ITML and DCA employ a constant number of similarity constraints regardless of

training set size. However, we observe that the DCA CPU times increase in proportion

to the training set size, though on a much smaller scale. More importantly, however, is

the fact as the training set size increases, smaller τ values tend to produce equivalent

or better accuracies using ITML than larger τ values. One implication of this is that

ITML may suffer from overfitting effects when the convergence parameter τ is too

small.

As expected, computation time typically increases with larger training sets and
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Figure 6.9 : Average CPU time (seconds / fold) vs. Samples/Class on the Ocean City
Minor (left), Major (middle) and Combined (right) data sets. Y-axis scales differ to
reflect the relative relationships between algorithms for each scenario. The inset box
in each figure gives a zoomed view of the EUC, LDA, LFDA and DCA CPU times
within the [0, 10] second range. Error bars give the standard deviation of the cross
validation folds.

The atypical ITML runtimes can be partially attributed to the fact that both

ITML and DCA employ a constant number of similarity constraints regardless of

training set size. However, we observe that the DCA CPU times increase in proportion

to the training set size, though on a much smaller scale. More importantly, however, is

the fact as the training set size increases, smaller τ values tend to produce equivalent

or better accuracies using ITML than larger τ values. One implication of this is that

ITML may suffer from overfitting effects when the convergence parameter τ is too

small.

As expected, computation time typically increases with larger training sets and
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Feature-weighted Metric Learning
Application: Superpixel Segmentation

22

More accurate similarity measure => more pure* superpixels 

Goal: segment image into groups of spatially contiguous spectra (superpixels) 
representing similar materials (via the Felzenszwalb segmentation algorithm)
• Reduces processing time of subsequent analyses 
• Noise reduction of order n½ for an n-pixel superpixel 

Example Pixel! Fine Superpixel! Coarse Superpixel!

CRISM FRT0003e12!

[Bue and Thompson, WHISPERS 2010]

*pure = constituent spectra represent the same material(s)

[Felzenszwalb 2004]
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EUC

Segmentation Results 
CRISM Image 863e: Euclidean vs. LDA vs. ITML

23

Su
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ix
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y

121

range of b values in 10{−4,...,1} and provide overall statistics for segmentations produced

by each metric on that range. We chose this range because the number of superpixels

produced by each metric followed a similar trend for all of the images we studied. We

focus on segmentations that produce 200-1250 superpixels, as segmentations with few

superpixels tend to inadequately capture morphological characteristics of the imagery

we study, while segmentations with large quantities of superpixels are more sensitive

to noise and insignificant differences in spectra. We ignore superpixels consisting of

less than t = 50 pixels, as they tend to be unstable and noisy with respect to the

training classes. Ignoring these small superpixels is done for evaluation purposes only,

as it allows for a more consistent evaluation of the resulting segmentation maps.

4.4.1 Experimental Results

Class (# pixels) EUC LDA ITML

FeMg Smectite (6443) 26 49 48

Kaolinite (4051) 98 99 99

Montmorillonite (10901) 11 31 17

Nontronite (4753) 37 52 40

Neutral Region (115225) 97 99 98

Average 53 66 60

Table 4.2 : Average pure pixels / segment
for Euclidean, LDA and ITML-based seg-
mentations of image 863e (Figure 4.9). Best
and worst average per-class accuracy given
in green and red font, respectively.

Figure 4.9 gives a set of segmentation

maps for image 863e where the Eu-

clidean and LDA/ITML-learned metrics

produced a comparable number of seg-

ments. The number of segments for the

train/test images are provided for each

segmentation. Visually, the LDA-based

segmentation produces segments that bet-

ter match the underlying morphology of

the image data. The Euclidean-based seg-

mentation, and to a lesser degree, the ITML-based segmentation, both suffer from

column striping artifacts as noisy bands are not well compensated for using these

metrics. This is also reflected in the percentages of pure pixels / segment given in

53 66 60(%)

LD
A

E
U

C

Fewer noise segments Segments follow 
class boundaries

 red lines=segment boundaries | colored regions=class ROIs | white regions=unlabeled pixels
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Inter-domain Material Identification

24

Source and target spectra captured under similar 
(but not identical) conditions ⇒ DS ≈ DT 

good source classifier ⇏ good target predictionsWhat do you mean, theory?

!"#$%#%&'())*+#,(&(-))./+',01

Source Test Error
Target Test Error
Source Train Error

Figure: Blitzer, DANLP ‘10
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Inter-domain Material Identification

25

Spectra reflect their 
capture conditions
• atmosphere
• seasonal effects
• sensor resolution
(spatial + spectral)

• viewing geometry
• ...

Classifier trained
with Av97 spectra 
will not generalize to 
Hyp11 spectra 
(and vice-versa)

Cuprite Mining District, Cuprite NV 
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Wavelength (μm) Wavelength (μm)

2. Jarosite + Alunite (55)
3. Alunite (336)
4. Kaolinite (382)
5. Muscovite (425)

1. Calcite (1076)
Class (# Samples)Color

AVIRIS, Jun. 1997: “Av97” Hyperion, Feb. 2011: “Hyp11”

⇒

Do not always have representative samples to classify target materials
⇒ can we train a classifier using samples from similar imagery?
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Domain Adaptation Problems
Supervised vs. Unsupervised

26

Domain Adaptation: improve source to target generalization by 
reconciling domain-specific differences

Common
Feature Space

Target Domain 
Feature Space

Source Domain 
Feature Space

Two contexts:
I. Supervised: small amount* of labeled target data available 
II. Unsupervised: no labeled target data available

Related topics: multitask/transfer learning, manifold alignment

*small amount=insufficient to train a target domain classifier

Unlabeled Sample
Labeled Sample
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    Classes better separated in Av97 image than in Hyp11 image
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B. Bue: Adaptive Similarity Measures

… … 

Source Domain! 1. Select Q paired pivot 
samples !P 

S, P 
T"!

asphalt 

tree 

grass 

… 

Input: NS labeled source !
           spectra (XS,YS)!

Target Domain!

3. Train classifier in relational space! … 

Input: NT unlabeled target !
           spectra XT 

… 

Output: Target!
 predictions YT 

asphalt 

tree 

grass 

PS PT 

R(xS , PS) → rS

R(xT , PT ) → rT

2. Apply relational transform!

R 
R 

S#

Multiclass Domain Adaptation
Relational Class Knowledge Transfer (RelTrans) 

28

Pivot Selection
Supervised:
➡Match labeled samples to define 

PS 
 and PT  (e.g., samples near 

class means)

Unsupervised:
➡Select PT 

 that reflect inter-class 
structure of PS 

[Bue et al., WHISPERS 2010, 2011]
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B. Bue: Adaptive Similarity Measures

For sample xD and pivot set PD from domain D ∈ {S,T },
map xD from Rn→RQ according to

Relational (“R-space”) Transformation 

29

R(xD, PD) =

(
d(xD,pD

1 )
∑Q

!=1 d(x
D,pD

! )
, . . . ,

d(xD,pD
Q)

∑Q
!=1 d(x

D,pD
! )

)

where

Q =
�K

k=1 Qk

Q k = # of pivots for class k

d(xD, pD) = ||xD - pD||2*

➡ l th entry of R(xD, pD) = likelihood of distinguishing xD    
                                      and pl

D  from other pivots PD

* xD = xD/||xD||2  ⇒ d(xD, pD) ⇒ angle between xD and pD
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B. Bue: Adaptive Similarity Measures

Relational (“R-space”) Transformation
Example (K=3, Qk=1)

30

asphalt

grass

tree

R
efl

ec
ta

nc
e

Source Pivots Target Pivots

PS =
{
pS
1 ,p

S
2 ,p

S
3

}
PT =

{
pT
1 ,p

T
2 ,p

T
3

}

pT
1

pT
2

pT
3pS

3

pS
2

pS
1

Source Spectrum

(grass)xS

Target Spectrum

(grass)xT

pT
1 pT

2 pT
3

R(xT , PT )

pS
3pS

2pS
1

R(xS , PS)

Domain-specific 
Feature Space

Common 
Feature Space

R(xD, PD) =

(
d(xD,pD

1 )
∑Q

!=1 d(x
D,pD

! )
, . . . ,

d(xD,pD
Q)

∑Q
!=1 d(x

D,pD
! )

)R-Transform
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B. Bue: Adaptive Similarity Measures

Supervised Domain Adaptation
MinDist vs. MinDist in the R-space

31

Source/Target Imagery and Image Classes!

Spectral overlap: 159 overlapping wavelengths ∈ [0.45,2.48] µm!

Source image (400 x 263) !
  HYDICE wavelengths: 210 bands!
Target image (400 x 202)!
  MASTER wavelengths: 25 VNIR bands   !
Spatial overlap: 400 x 61 pixels!
Spectral overlap: 159 wavelengths!

Source Image Segmentation (Merényi et al., 2009)!
  Spectra selected by stratified sampling !
  nS=nT=2000 source/target spectra sampled!
  nC=300 correspondence points  !

RIT DIRSIG Synthetic Imagery (Schott, 1999)!
400x400 pixels"
2m/pixel resolution"
70 different surface materials !

Synthetic hyperspectral (HYDICE, 210 bands) 
=> Synthetic multispectral (MASTER, 12 bands) 

Above: synthetic DIRSIG HYDICE and MASTER Images 

MinDist 
Source=>Target 

R-space MinDist
Source=>Target 

KS=KT 86% 99%

KS<KT
(+outlier 
detection)

58 (86)% 66 (97)%

Synthetic hyperspectral (HYDICE, 210 bands) => 
Real hyperspectral (AVIRIS, 224 bands)

Above: class means of pivots from DIRSIG (PS) and 
Ocean City AVIRIS (PT) images

149

5.7.4 Evaluation Methodology

We apply the same methodology as in Section 5.7.1, sampling 1000 pixels from each

of the D
2

G
and D

2

B
images. We manually select 50 pivot samples for each source class.

The mean spectra of the pivot samples are shown in Figure 5.9. The mean spectra

of the five unknown target classes in the OD setting excluded from the source data,

consisting of 46% of the total target data, are shown in Figure 5.10.
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Figure 5.9 : Mean spectra for pivot samples between the D
2

G
(yellow), and AVIRISOC

(blue) images.

5.7.5 Experimental Results

Table 5.5 provides the overall accuracies for the DA and OD settings, respectively.

We see similar trends in classification accuracy as we observed on the synthetic data

with both MinDist and RelSim. In particular, we observe considerable improvements

with RelSim over MinDist in the DA (72%s vs. 45%) and OD (43% vs. 26%)

MinDist 
Source=>Target 

R-space MinDist
Source=>Target 

KS=KT 45% 72%

KS<KT
(+outlier 
detection)

26 (31)% 43 (74)%
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Retrieval of Apparent Surface Reflectance 313 

use the surface as a reference (e.g., the empirical line 
method and reference endmember modeling) if the 
reference areas in the image are at substantially different 
elevations than the areas of interest. This assumption 
is also a problem for the LOWTRAN 7 reflectance 
conversion unless LOWTRAN 7 is run with a different 
input atmospheric path length for each pixel, a computa- 
tional intensive task. In the scenes examined below, 
topography is relatively subdued with differences in 
elevation of less than 0.5 km. 

The primary disadvantage of not correcting for vari- 
ations in atmospheric path length or nonuniformity 
within a scene is that the retrieved reflectances at and 
around water absorption features will be erroneous. 
This will be most notable at the 0.94/am and 1.13/~m 
features and also at the wings of the more profound 
1.4 btm and 1.9/~m features. For applications such as 
mineralogic or vegetative mapping, this will not be an 
impediment. For more sophisticated applications that 
seek to use hyperspectral data to determine leaf water 
content and/or  surface moisture (e.g., Green et al., 
1991; Gao et al., 1991), errors in the reflectance at 
these water features will be extremely detrimental. Such 
applications will of necessity have to utilize radiative 
transfer techniques that can determine column water 
abundance on a pixel-by-pixel basis. Naturally such meth- 
ods require far greater blocks of computer time than 
the methods which assume a single set of correction 
factors for the entire scene. 

Topography accounts for a third assumption-that 
pixels are viewed from similar perspectives. As was alluded 
to earlier, a level surface's photometric properties can 
dictate that it will have a different apparent reflectance 
than a sloped surface of equivalent materials. 

Empirical Line Method 
The empirical line method for the recovery of surface 
reflectance has been described in numerous places (e.g., 
Conel and Alley, 1985; Roberts et al., 1986; Conel et 
al., 1987). The empirical line method is based on the 
following simplified equation: 

DNb = p().)Ab + B~, (1) 

where DN~ equals the digital number for a given pixel 
in band b, p(2) equals the reflectance of the surface 
materials within the GIFOV of that pixel at the wave- 
length 2 of band b, Ab equals the multiplicative term 
which affects the DN (transmittance and instrumental 
factors), and Bb equals the additive term (primarily atmo- 
spheric path radiance and instrumental offset, i.e., dark 
current). The empirical line method is used to solve for 
the gain values Ab and offset values Bb in Eq. (1). The 
method relies on the characterization of the surface 
reflectance within two or more areas of varying albedos 
that are compositionally as homogeneous as can be 

D N  

( 

:5 = . , I P  B r i K h t  tarZet 

~ " D a r k  t m ~ e t  

y i n t e r c e p t  - OITse t  

R e f l e c t a n c e  

Figure 2. Gain and offset derived from a single channel via 
the empirical line method. 

found. 2 This method is frequently applied with just one 
light and one dark target; then, for any band, a plot 
such as Figure 2 can be made wherein the image DN 
of one or more pixels covering the light and dark targets 
is plotted against the measured surface reflectance of 
those targets. The slope of the resulting line is the gain 
for that band and the y-intercept is the offset. Better 
statistics can be obtained by using more surface cali- 
bration targets. Four targets were used for the LCVF 
AVIRIS data. Gain and offset spectra were determined 
using a least squares fitting technique. The Pavant Butte 
data were corrected using just two calibration targets. 

The values for ground reflectance of the calibration 
targets can be determined either with field spectrome- 
ters or by measuring the reflectance of representative 
samples in the laboratory. Coincident with the ER-2 
overflights of the LCVF on 29 September 1989 measure- 
ments of the reflectance of the Lunar Lake playa were 
made with the Portable Instant Display and Analysis 
Spectrometer (PIDAS) (Goetz, 1987). Eighty measure- 
ments of the playa surface were made with a reference 
measurement of a Spectralon T M  standard made after 
every four surface measurements for a total of 100 
spectra. Measurements of basalt flows near Lunar Lake 
had been made on 17 July 1989 by a Single beam visible 
InfraRed Intelligent Spectrometer (SIRIS). 

Laboratory measurements were made on samples 
of oxidized basaltic cinders and hydrovolcanic basaltic 
tuff from the Easy Chair Crater tuff and cinder cone. 
The reflectance of these samples were measured over 
a spectral range of 0.3-2.7/tm at the RELAB facility 

z The more homogeneous the target, the easier it is to character- 
ize the surface reflectance within the territory covered by several 
pixels using a field spectrometer. 

RFLb(λ)

R
A

D
b(

λ)

Slope=Ab

Bb

Field-measured 
bright target

Field-measured 
dark target

Figure modified after: 
[Farrand et al. 1994] 

Empirical Line Method (ELM)

Two Approaches:
I. Atmospheric modeling (i.e., radiative transfer)
‣ Problem: computationally expensive

II.Linear approximation (ELM): regression using 
field-measured reflectance spectra

‣ Simple model, often yields comparable/
better results than radiative transfer methods

‣ Problem: field spectra may not be available

Supervised Domain Adaptation 
Radiance to Reflectance Classification

32

Remotely-sensed spectra contaminated by atmospheric particles
Atmospheric Calibration: converts contaminated at-sensor radiance 
(RAD) measurements to surface reflectance (RFL)

RADb(λ)≈AbRFLb(λ)+Bb

b: band
λ: wavelength
Ab: gain at band b
Bb: offset at band b
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Figure 5.11 : L2-normalized class means from image D2 in radiance (left) vs. reflectance
(right) units. Y-axis tick marks give the minimum and maximum value for each
spectrum in each class.

Specifically, we map each sample xD to the R-space using its corresponding pivot set

PD, for D ∈ S, T , according to Equation (5.1). We then train a multiclass classifier
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Figure 5.11 : L2-normalized class means from image D2 in radiance (left) vs. reflectance
(right) units. Y-axis tick marks give the minimum and maximum value for each
spectrum in each class.

Specifically, we map each sample xD to the R-space using its corresponding pivot set

PD, for D ∈ S, T , according to Equation (5.1). We then train a multiclass classifier

Goal: classify reflectance  spectra 
using radiance spectra as training 
data (RAD2RFL) and vice-versa

(RFL2RAD) 
‣ Evaluate R-space accuracy with 

different classifiers
‣ Compare to multi-task learning 

techniques
Data: Synthetic HYDICE spectra, 
10 classes, 200 samples/class (right)

Intra-domain accuracies:
‣ RAD = 100.0%, RFL  = 99.4%

Supervised Domain Adaptation 
Radiance to Reflectance Classification

33
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Figure 5.11 : L2-normalized class means from image D2 in radiance (left) vs. reflectance
(right) units. Y-axis tick marks give the minimum and maximum value for each
spectrum in each class.

Specifically, we map each sample xD to the R-space using its corresponding pivot set

PD, for D ∈ S, T , according to Equation (5.1). We then train a multiclass classifier

RAD RFL
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34

Accuracy in original feature space vs. average RelTrans accuracy for Qk 
∈ {5,10,20,50,100} pivots / class (red=best, blue=second best)

Mindist: Minimum 
distance to class means
GLVQ: Generalized 
Learning Vector 
Quantization
GRLVQ: Generalized 
Relevance Learning 
Vector Quantization
SVM-lin: Support Vector 
Machine (linear kernel)
SVM-rbf: Support Vector 
Machine (radial basis 
function kernel)

‣ Original feature space: all samples classified into one (0.1123) or two (0.2024) class(es)
‣ All classifiers above give good performance in R-space

157

Multiclass RAD2RFL RFL2RAD Overall

Qk Mean Std Mean Std Mean Std

Mindist Base 0.1123 0.0087 0.1123 0.0008 0.1123 0.0048
Mean 0.8904 0.0058 0.8634 0.0139 0.8769 0.0099

GLVQ Base 0.1123 0.0000 0.1123 0.0000 0.1123 0.0000
Mean 0.8798 0.0174 0.8575 0.0296 0.8687 0.0235

GRLVQ Base 0.1123 0.0000 0.1123 0.0000 0.1123 0.0000
Mean 0.8788 0.0161 0.8467 0.0132 0.8628 0.0146

SVM-lin Base 0.2024 0.0076 0.1123 0.0000 0.1574 0.0038
Mean 0.8742 0.0040 0.8806 0.0047 0.8774 0.0044

SVM-rbf Base 0.2063 0.0011 0.1123 0.0000 0.1409 0.0266
Mean 0.8823 0.0099 0.8894 0.0194 0.8858 0.0147

Table 5.8 : Mean and standard deviation of classification accuracy using different mul-
ticlass classifiers to classify RAD2RFL and RFL2RAD data in the original source and
target feature spaces (Base, shaded cells) vs. in the R-space with Qk ∈ {10, 25, 50, 75,
100} labeled pivots/class. The mean accuracy over the range of Qk values is provided
for each classifier. The best and second best performing classifiers are given in red and
blue italics for each scenario. All of the classifiers produce considerable improvements
over their respective baseline accuracies, and show competitive performance to one
another, with overall accuracies differring by < 2%.

the regularized logistic loss

min
W,c

Nt�

i=1

Nt
i�

j=1

log (1 + exp (−Yi,j (�Wi, Xi,j�+ ci))) + Ω(W,γ), (5.7)

where W is the N t × n matrix of weight vectors for each of the tasks, c is the vector

of scalar offsets for each task, and Ω(W,γ) is an algorithm-specific regularization

function that encodes the relatedness between the tasks, according to parameter vector

γ. The binary prediction y ∈ {−1, 1} for sample vector x from task i is computed

according to y = sign(�Wi,x�+ ci).

Note that the above formulation is designed for binary classification problems.

At this time, however, we are currently not aware of existing techniques that can

handle MTL problems consisting of more than two classes. Consequently, to compare

our multiclass classification results to those produced using the MTL techniques, we

RT

RT

RT

RT

RT

Orig

Orig

Orig

Orig

Orig
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Related Work: Multitask Learning
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Figure modified after: 
[Zhou et al. 2012] 

3 Interface Specification

3.1 Input and Output

All functions implemented in MALSAR follow a common specification. For a multi-task learning algorithm
NAME, the input and output of the algorithm are in the following format:

[MODEL VARS, func val, OTHER OUTPUT] = ...
LOSS NAME(X, Y, ρ1, ..., ρp, [opts])

where the name of the loss function is LOSS, and MODEL VARS is the model variables learnt.
In the input fields, X and Y are two t-dimensional cell arrays. Each cell of X contains a ni-by-d matrix,

where ni is the sample size for task i and d is the dimensionality of the feature space. Each cell of Y contains
the corresponding ni-by-1 response. The relationship among X, Y and W is given in Figure 2. ρ1 . . . ρp are
algorithm parameters (e.g., regularization parameters). opts is the optional optimization options that are
elaborated in Sect 3.2.

In the output fields, MODEL VARS are model variables that can be used for predicting unseen data points.
Depending on different loss functions, the model variables may be different. Specifically, the following
format is used under the least squares loss:

[W, func val, OTHER OUTPUT ] = Least NAME (X, Y, ρ1, ..., ρp [opts])

where W is a d-by-t matrix, each column of which is a d dimensional parameter vector for the corresponding
task. For a new input x from task i, the prediction y is given by

y = xT ·W (:, i).

The following format is used under the logistic loss:

[W, c, func val, OTHER OUTPUT ] = ...
Logistic NAME (X, Y, ρ1, ..., ρp [opts])

!"#$%&%'

!"#$%(

&'()*#'+*!)

,"
(
-.
)%
! "

/// ,"
(
-.
)%
! #

,"
(
-.
)%
! $

*"#(+$",-

!"#$%(

,"
(
-.
)%
! "

/// ,"
(
-.
)%
! #

,"
(
-.
)%
! $

."/01%/",2

!"#$%(
&'(

)*#'+*!)

31)"4,5

31)"4,6
741'&/(&8,."'$"//&1%9

Figure 2: The main input and output variables.

10

3 Interface Specification

3.1 Input and Output

All functions implemented in MALSAR follow a common specification. For a multi-task learning algorithm
NAME, the input and output of the algorithm are in the following format:

[MODEL VARS, func val, OTHER OUTPUT] = ...
LOSS NAME(X, Y, ρ1, ..., ρp, [opts])

where the name of the loss function is LOSS, and MODEL VARS is the model variables learnt.
In the input fields, X and Y are two t-dimensional cell arrays. Each cell of X contains a ni-by-d matrix,

where ni is the sample size for task i and d is the dimensionality of the feature space. Each cell of Y contains
the corresponding ni-by-1 response. The relationship among X, Y and W is given in Figure 2. ρ1 . . . ρp are
algorithm parameters (e.g., regularization parameters). opts is the optional optimization options that are
elaborated in Sect 3.2.

In the output fields, MODEL VARS are model variables that can be used for predicting unseen data points.
Depending on different loss functions, the model variables may be different. Specifically, the following
format is used under the least squares loss:

[W, func val, OTHER OUTPUT ] = Least NAME (X, Y, ρ1, ..., ρp [opts])

where W is a d-by-t matrix, each column of which is a d dimensional parameter vector for the corresponding
task. For a new input x from task i, the prediction y is given by

y = xT ·W (:, i).

The following format is used under the logistic loss:

[W, c, func val, OTHER OUTPUT ] = ...
Logistic NAME (X, Y, ρ1, ..., ρp [opts])

!"#$%&%'

!"#$%(

&'()*#'+*!)

,"
(
-.
)%
! "

/// ,"
(
-.
)%
! #

,"
(
-.
)%
! $

*"#(+$",-

!"#$%(

,"
(
-.
)%
! "

/// ,"
(
-.
)%
! #

,"
(
-.
)%
! $

."/01%/",2

!"#$%(

&'(
)*#'+*!)

31)"4,5

31)"4,6
741'&/(&8,."'$"//&1%9

Figure 2: The main input and output variables.

10

min
W,c

t�

i=1

ni�

j=1

log (1 + exp (−Yi,j (�Wi,·, Xi,j�+ ci))) + Ω(W,γ)

Logistic Loss Regularizer
 Problem:    Two-class assumption! Yi,j ∈ {-1,1}

 Approach: Learn K(K-1)/2 binary multitask classifiers, 
predict via majority vote

Jointly-learned, per-task linear modelsPer-task (task=domain) training data
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Ω(W,γ)
γ1�W�1 + γ2�W�22
γ1�W�1,2 + γ2�W�22

γ1�W�∗

Source task: NS 
labeled source domain 
samples
Target task: Q labeled 
target pivot samples

Binary decomposition ignores multiclass structure of the learning problem

168

MTL RAD2RFL RFL2RAD Overall

Qk Mean Std Mean Std Mean Std

JFS Mean 0.8444 0.0521 0.7953 0.0103 0.8198 0.0312

MTFL Mean 0.8785 0.0126 0.8015 0.0058 0.8400 0.0092

Trace Mean 0.8921 0.0015 0.8004 0.0108 0.8463 0.0062

SVM-lin Mean 0.8742 0.0040 0.8806 0.0047 0.8774 0.0044

SVM-rbf Mean 0.8823 0.0099 0.8894 0.0194 0.8858 0.0147

Table 5.10 : Mean and standard deviation of classification accuracy in the RAD2RFL

and RFL2RAD scenarios using different MTL algorithms for Qk ∈ {10, 25, 50, 75,
100} labeled target samples / class. The mean accuracy over the range of Qk values is

provided for each algorithm. The best and second best performing algorithms for the

average of the Qk values are given in red and blue italics for each scenario, and overall.

While the MTFL and Trace algorithms show competitive accuracies to RelTrans in

the RAD2RFL scenario, they perform substantially worse in the RFL2RAD scenario.

binary domain adaptation problems.

The learning bounds provided by Ben-David et al. [2010a] each take the form

�T (h) ≤ �S(h) + d(DT
) + V (5.8)

where h(x) → {−1, 1} is a binary classifier trained using the source domain data, �D(h)

is the error in the domain D ∈ {S, T} using h, d(DS,DT
) is a measure of divergence

between the source and target distributions (described below), and V characterizes

the complexity of the learning problem in each domain, along with the adaptability of

the problem across the domains according to the true labeling functions fD
(x) for

domain D ∈ {S, T}. However, because the true labeling functions are unknown, we

cannot estimate V in practical domain adaptation settings. And while it is possible to

bound V based on the Vapnik-Chervonenkis (VC) dimension of the problem [Vapnik

and Chervonenkis, 1971], determining the VC dimension is itself a nontrivial task, and

the resulting bounds are typically too conservative to be of practical utility. Despite

these issues, we show later that a classifier h which minimizes both the source domain
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M
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L
R

T

Average accuracy using MTL techniques vs. RelTrans with Qk ∈ {5,10,20,50,100} 
labeled target samples (pivots) / class (red=best, blue=second best)
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R1

R3

Issue: separability of classes in source vs. target domain*
I. Target classes more separated than source classes ⇒ D.A. easier
II.Target classes less separated than source classes ⇒ D.A. harder

* Assuming source/target domains similar
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I. confident predictions 

in ambiguous region
II.samples near decision 

boundaries misclassified

Figures modified after: [Bishop 06]
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Unsupervised Domain Adaptation
Multiclass Continuous Correspondence Learning (MCCL)

38

Source Domain

Between-class distances 
relatively preserved

Between-class distances 
not relatively preserved

Target Domain I Target Domain II

Assume between-class distances relatively preserved across domains

For each source pivot pi
S in PS, select target pivot pi

T = xT s.t.
Unsupervised Pivot Selection with MCCL: 

� =
j

�R(pS
i , P

S)−R(xT
j , P

S)�, j ∈ {1, . . . ,M}NT

[Bue and Thompson, NIPS 
Domain Adaptation workshop 2011]
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Class Means in R-SpaceS=0.97, T=0.97, ST=0.88, R-ST=0.95, R*-ST=0.93
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Unsupervised Domain Adaptation 
Synthetic Example: Transformed Gaussians
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UnsupervisedBaseline Supervised

MCCL-selected target pivots

Source pivots (50/class)
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!"#$%&'()'*$%+$,+'-"+%".+/*&')%0"

!"#$%&'()*+,-./
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Source Sample Linear Separator

!"#$%&'()'*$%+$,+'-"+%".+/*&')%0"

!"#$%&'()*+,-./
!"#$%&'()*+,-.012

Target Sample

                      Small H-divergence ⇒
Source and Target indistinguishable  ⇒
Good Source ⇒ Target generalization

                  Large H-divergence ⇒
Source and Target easy to distinguish ⇒
Poor Source ⇒ Target generalization

Unsupervised Domain Adaptation
Measuring Pivot Set Quality with H-divergence

40
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H-divergence: measures separability of source vs. target domain samples

[Ben-David et al. 2010]

‣For Qk  ∈ Qrange 
‣Select Qk source/target pivots per class via MCCL
‣Hk = H-divergence between R(pS,PS) and R(pT,PT) for class k

‣Best pivot set ⇔ {PS, PT} for Qk  minimizing average Hk

Pivot Set Selection Algorithm (Pdiv) Good set of pivots ⇔ R-space 
mapping with low H-divergence 

Hdiv = 0.5 Hdiv = 0.134

Figures modified after: 
Ben-David et al. 2010
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•Maximum unsupervised accuracy at minimum Pdiv value (♦)
•Discrepancy between Av97⇒Hyp11 and Hyp11⇒Av97 accuracies
•Can other techniques do better?

Unsupervised Domain Adaptation
MCCL Accuracy vs. Pdiv: Cuprite Av97 vs. Hyp11 
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Figure 2: Whitened class means for Av97 (left) and Hyp11 (right) images. Sample counts for each class are as

follows: Calcite: 1076, Jarosite+Alunite: 55, Alunite: 336, Kaolinite: 382, Muscovite: 425.

using Algorithm 1 (R
∗
-ST) yields comparable results to using labeled pivots (R-ST) for domain

adaptation. However, in the Av97⇒Hyp11 scenario, we see worse domain adaptation performance

along with a larger gap between the R-ST and R
∗
-ST results. Recall that the mapping between

domains is defined by the source pivots, so if the classes are better separated in the target domain

then in the source (e.g. the Hyp11⇒Av97 scenario), the mapping performs well. However, if the

target data is less separable than the source (e.g. the Av97⇒Hyp11 scenario), then the source pivots

may not discriminate ambiguous target classes.
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Figure 3: Classification accuracies for contexts described in Section 2 (left two plots) and Pdiv scores vs.

pivots/class Qk (right two plots) for Av97⇒Hyp11 and Hyp11⇒Av97 scenarios. Black diamonds indicate the

best Pdiv score for the R
∗
-ST context yielding the classification accuracy in the left two plots.

For the Av97⇒Hyp11 scenario, Qk = 10 attains the minimum Pdiv value, where we also observe

the maximum R
∗
-ST classification accuracy. Also, Pdiv increases with Qk while the R

∗
-ST accu-

racy remains relatively constant, indicating that additional pivots determined by the Av97 source

data do not improve domain adaptation. In the Hyp11⇒Av97 scenario, while we see a gradual de-

crease in Pdiv for increasing Qk – with slight improvements in accuracy, the Av97 classes are well

separated for mid-range Qk values ∈ {10, . . . , 50}. For small Qk, we observed low accuracy in all

of R-S, R-T and R
∗
-ST cases, indicating the pivot set is inadequate to describe the classification task.

We can filter such degenerate cases by ensuring that the R-space accuracy on the source data (R-S)

is approximately the same as in the original feature space (S) (an approach also described in [2]).

This allows us to define a lower limit on the number of pivots necessary to define a feature space ex-

pressive enough for domain adaptation. We note that accuracy on the within-domain cases (S, T) are

approximately equivalent to their corresponding R-space cases (R-S, R-T) when Qk is sufficiently

large (Qk ≥ 10). We also note that when target labels are available for domain adaptation (R-ST),

we achieve relatively high accuracy even for small Qk.

3 Conclusions and Future Work

In this paper, we provided an extension to structural correspondence learning in continuous domains

built upon our previous work in domain adaptation [5], [6], and provided a methodology to auto-

matically select pivot samples to reconcile differences between domains. We show empirically that

when between-class distances are preserved across domains, our automated pivot sample selection

technique performs competitively to the case when labeled target samples are available to define a

mapping between domains. In future work we will investigate the theoretical relationship between

the implicit kernel mapping described in [1] to the R-transform (Equation 1) in the contexts of mul-

ticlass classification and domain adaptation.
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Manifold 
Alignment

Define
Correspondences

Domain Adaptation
Related Techniques: Manifold Alignment

42

[Ham et. al, 2005, 
Wang et al., 2007]

Figures modified after: Ham et al., 2005

our algorithms for manifold alignment using either

prior coordinate knowledge or paired correspondences.

Section 4 demonstrates the application of our approach

to aligning the pose manifolds of images of different ob-

jects. Finally, the utility and future direction of this

approach is discussed in Section 5.

2 Unsupervised manifold learning
with graphs

Let X and Y be two data sets in high dimensional

vector spaces

X = {x1, · · · ,xm} ⊂ RDX , Y = {y1, · · · ,yn} ⊂ RDY ,

with DX , DY � 1. When the data lie close to a low-

dimensional manifold embedded in a high dimensional

Euclidean space, manifold learning algorithms such as

[3] can successfully learn low-dimensional embeddings

by constructing a weighted graph that captures local

structure in the data. Let G(V, E) be the graph where

the vertices V correspond to samples in the data and

the undirected edges E denote neighborhood relation-

ships between the vertices. These neighborhood rela-

tions can be defined in terms of k-nearest neighbors or

an �-ball distance criterion in the Euclidean space of

original data. The similarities between points are sum-

marized by a weight matrix W where Wij �= 0 when

the ith and jth data points are neighbors (i ∼ j), oth-

erwise Wij = 0. The matrix W is typically symmetric,

and has nonnegative weights Wij = Wji ≥ 0. The

generalized graph Laplacian L is then defined as:

Lij :=






di, if i = j,
−Wij , if i ∼ j,
0, otherwise

where di =
�

j∼i Wij is the degree of the ith ver-

tex. If the graph is connected, L will have a sin-

gle zero eigenvalue associated with the uniform vector

e = [11 · · · 1]T .

A low-dimensional embedding of the data can be com-

puted from the graph Laplacian in the following man-
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neighbors, the matrix W is not symmetric. Nonneg-
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Figure 2: Graph embeddings for the s-curve and wave surface are aligned with given coordinates, and compared to

the unaligned embeddings. The lines indicate samples whose known coordinates are used to estimate a common

embedding space.

The solution in (6) is a linear superposition of har-

monic functions which directly interpolate the labeled

data.

Given r-dimensional coordinate vectors S = [s1 · · · sr]

as desired embedding coordinates, solutions f i of (5)

or (6) can be used as estimated coordinates of un-

labeled data. This ”stretches” the embedding of the

graph so that the labeled vertices are at the desired co-

ordinates. Figure 3 shows the results of this algorithm

applied to an image manifold with two-dimensional

pose parameters as coordinates. Simultaneous align-

ment of two different data sets is performed by simply

mapping each of the data sets into a common space

with known coordinates. Given two data sets X and

Y , where subsets Xl and Yl are given coordinates s
and t respectively, we let f and g denote real-valued

functions, and Lx
and Ly

the graph Laplacians of X
and Y respectively. Since there is no explicit coupling

between X and Y , we use (6) to get the two solutions:

fu = −(Lx
uu)

−1Lx
ul s, and gu = −(Ly

uu)
−1Ly

ul t.

Figure 2 shows the semisupervised algorithm applied

to the synthetic data used in the previous section.

Among the 600 and 800 points, 50 labeled points are

randomly chosen from each, and the two-dimensional

coordinates are provided for s and t. The graph

weights are chosen by the best convex reconstruction

from 6 and 10 neighbors. As can be seen from the fig-

ure, the two curves are automatically aligned to each

other by sharing a common embedding space. From

this common embedding, a point on the s-curve can be

mapped to the corresponding point on the wave sur-

face using nearest neighbors, without inferring a direct

transformation between the two data spaces.

In [18, 17] the authors assumed symmetric and nonneg-

ative weights. With an asymmetric L, the quadratic

term in (4) is no longer valid, and the smoothness term

may be replaced with the squared error cost (3). How-

ever, there is a difference in the resulting aligned em-

beddings using a different choice of edge weights on

the graph. This is illustrated in the right side of Fig-

ure 3 where convex and affine weights are used. With

convex weights, the aligned embedding of unlabeled

points lies within the convex hull of labeled points. In

contrast, the affine weights can extrapolate to points

outside the convex hull of the labeled examples. If we

consider the matrix of coefficients M = −(Luu)
−1Lul

in (6), it is not difficult to see
�

j Mij = 1 for all i
because

�
j∈u Lij +

�
j∈l Lij =

�
j Lij = 0 for all

i. Consequently, each row of M are affine coefficients.

With an additional constraint Wij ≥ 0, the M satisfies

Mij ≥ 0 as well, (refer to [4] for proofs) rendering each

row of M convex coefficients.

3.2 Alignment by pairwise correspondence

Given multiple data sets containing no additional in-

formation about intrinsic coordinates, it is still possi-

ble to discover common relationships between the data

sets using pairwise correspondences. In particular, two

data sets X and Y may have subsets Xl and Yl which

are in pairwise alignment. For example, given sets of

images of different persons, we may select pairs with

the same pose, facial expression, etc. With this ad-

ditional information, it is possible to then determine

how to match the unlabeled examples using an aligned

manifold embedding.

The pairwise correspondences are indicated by the in-

dices xi ↔ yi, (i ∈ l), and f and g denote real-valued

functions defined on the respective graphs of X and Y .

f and g represent embedding coordinates that are ex-

tracted separately for each data set, but they should

s-curve

wave

Raw embedding Aligned embedding

Figure 4: The graph embeddings of the s-curve and wave surface are aligned by pairwise correspondence. 100
pairs of points in one-to-one correspondence are indicated by lines (only 50 shown).

4 Applications

The goal of aligning manifolds was to find an bi-
continuous map between the manifolds. A common
embedding space is first learned by incorporating ad-
ditional information about the data samples. We can
use this common low-dimensional embedding space to
address the following matching problems. What is the
most relevant sample yi ∈ Y that corresponds to a
xj ∈ X? or the most relevant sample xi ∈ X that
corresponds to a yj ∈ Y ?

The Euclidean distance of samples in the common
embedding space can provide a relevant measure for
matching. Let F = [f1f2 · · · fr] and G = [g1g2 · · · gr]
be the r-dimensional representations of aligned mani-
folds of X and Y . If the coordinates in F and G are
aligned from known coordinates, the distance between
xi ∈ X and yj ∈ Y is defined by the usual distance:

d(xi,yj)
2 :=

�

k

|Fik −Gjk|2.

If F and G are computed from normalized eigenvec-
tors of a graph Laplacian, the coordinates should be
properly scaled. We use the eigenvalues λ1,λ2, · · · , to
scale the distance between xi and yi [10]:

d(xi,yj)
2 :=

�

k

|Fik −Gjk|2/λk.

Then the best match yi ∈ Y to x ∈ X is given by
finding arg mini d(x,yi).

We demonstrate matching image examples with three
sets of high-dimensional images. The three data sets
X, Y , and Z consist of 841 images of a person, 698
images of a statue, and 900 images of the earth,
available at http://www.seas.upenn.edu/∼jhham and
http://isomap.stanford.edu/datasets.html. Data set X

consists of 120 × 100 images obtained by varying the
pose of a person’s head with a fixed camera. Data
set Y are 64 × 64 computer generated images of a 3-
D model with varying light sources and pan and tilt
angles for the observer. Data set Z are 100× 100 ren-
dered images of the globe by rotating its azimuthal and
elevation angles. For Y and Z we know the intrinsic
parameters of the variations: Y varies through -75 to
75 degrees of pan and -10 to 10 degrees of tilt, and
-75 to 75 degrees of light source angles. Z contains of
-45 to 45 degrees of azimuth and -45 to 45 degrees for
elevation changes. We use the pan and tilt angles of
Y and Z as the known 2-D coordinates of the embed-
dings. Affine weights are determined with 12,12, and
6 nearest neighbors to construct the graphs of data X,
Y , and Z.

We describe how both known pose coordinates as well
as pairwise correspondences are used to align the im-
age manifolds from the three different data sets.

Matching two sets with correspondence and
known coordinates

The task is to align X and Y using both the correspon-
dences of X ↔ Y , and the known pose coordinates of
Y . First, 25 matching pairs of images in X and Y
are manually chosen. The joint graph of X and Y is
formed by fusing the corresponding vertices as in (13).
Then the joint graph is aligned to the 25 sample co-
ordinates of Y by (6). The best matching images in
X and Y that correspond to various pose parameters
are found by nearest image samples in the embedding
space. Figure 5 shows the result when 16 grid points
in the pose parameter embedding are given and the
best matching images in X and Y are displayed.

Procrustes Alignment [Wang et al., 2007]

Feature-level Alignment [Wang et al., 2007]
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B. Bue: Adaptive Similarity Measures

TS(xS)·TS(xS) = [xS,xS,0n ]·[xS,xS,0n ] 
= 2(xS·xS) 

TT(xT)·TT(xT) = [xT,xT,0n ]·[xT,xT,0n ] 
= 2(xT·xT)

TS(xS)·TT(xT) = [xS,xS,0n ]·[xT,0n,xT ] 
=   xS·xT

Domain Adaptation
Related Techniques: EasyAdapt

43

TS(xS)  = [xS,xS,0n ]

TT(xT) = [xT,0n,xT ]

[Daumé, 2007]

Source/Target 
Transformations

Dot (or Kernel) Product in 
Transformed Space

Samples in same domain twice the weight as samples from different domains
Designed for binary classification problems [Daumé, 2010]

Transform all (labeled and unlabeled) source and target samples using 
the following transformation...
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B. Bue: Adaptive Similarity Measures

Problem: both manifold alignment and EasyAdapt supervised techniques
Solution: use MCCL-selected target pivots as “labeled” target data
Results:

Unsupervised Domain Adaptation
Comparisons to Related Work

44
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We also observe that both manifold alignment techniques generate poor prediction

accuracies for small values of Qk in both scenarios, and yield comparable overall accu-

racies, but only the feature-level alignment technique shows performance competitive

to RelTrans for large Qk, and requires a reasonable number of correspondences (i.e.,

Qk ≥ 50) to produce accuracies better than the baseline. This is likely a result of

the fact that Procrustes alignment computes a single affine transformation between

the source and target feature spaces, whereas the feature-level alignment technique

is capable of computing non-affine transformations. However, both algorithms are

also limited by the fact that they do not distinguish between correspondences in the

same class vs. correspondences in different classes when computing their respective

transformations between the domains. We will explore this relationship in more detail

later in Section 6.8.

Av97⇒Hyp11 Hyp11⇒Av97 Overall
Qk Mean Std Mean Std Mean Std

Baseline N/A 0.7429 0.0098 0.9428 0.0057 0.8429 0.0078

Procrustes Mean 0.7685 0.0134 0.8380 0.0175 0.8033 0.0155

Feature-level Mean 0.7021 0.0152 0.8913 0.0193 0.7967 0.0173

EasyAdapt Mean 0.7623 0.0218 0.9683 0.0133 0.8653 0.0176

MTL-Trace Mean 0.7449 0.0123 0.9161 0.0172 0.8305 0.0148

RelTrans Mean 0.8277 0.0120 0.9687 0.0074 0.8982 0.0097

Table 6.2 : Mean and standard deviation of classification accuracy in the

Av97⇒Hyp11 and Hyp11⇒Av97 scenarios using different domain adaptation al-

gorithms using the Qk ∈ {10, 25, 50, 75, 100} paired pivot samples / class selected

by MCCL as labeled target data. The mean accuracy over the range of Qk values is

provided for each algorithm. The best and second best performing algorithms for the

average of the Qk values are given in red and blue italics for each scenario, and overall.
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MTL-Trace Mean 0.7449 0.0123 0.9161 0.0172 0.8305 0.0148

RelTrans Mean 0.8277 0.0120 0.9687 0.0074 0.8982 0.0097

Table 6.2 : Mean and standard deviation of classification accuracy in the

Av97⇒Hyp11 and Hyp11⇒Av97 scenarios using different domain adaptation al-

gorithms using the Qk ∈ {10, 25, 50, 75, 100} paired pivot samples / class selected

by MCCL as labeled target data. The mean accuracy over the range of Qk values is

provided for each algorithm. The best and second best performing algorithms for the

average of the Qk values are given in red and blue italics for each scenario, and overall.

Issues: 
Procrustes/Feature-level Manifold Alignment 
‣ Assumes single linear transformation can reconcile source/target domains
EasyAdapt / MTL
‣ Parameters optimized for pairs of classes, independent of other classes 

R-space embedding captures multiclass structure of the learning problem

Average accuracy using related techniques vs. RelTrans with Qk ∈ {5,10,20,50,100} 
MCCL-selected target samples (pivots) / class (red=best, blue=second best)

44Tuesday, April 16, 2013



B. Bue: Adaptive Similarity Measures

Unsupervised Domain Adaptation 
SVM Model Selection and Regularization
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Figure 6.5 : Classification accuracy vs. SVM slack parameter C in the original

Av97 and Hyp11 feature spaces (top) and in the R-space (bottom). Accuracies in

the Av97⇒Hyp11 and Hyp11⇒Av97 and corresponding R-space scenarios computed

based on the true target labels. R-space accuracies averaged over Qk ∈ {10, 25, 50,
75, 100 }. In the R-space, the C values maximizing the accuracy in the source domain

typically maximize the domain adaptation accuracy as well, which is not the case in

the original feature space.

the accuracy on the target data. In the original Av97 and Hyp11 feature spaces, we

can see that the most accurate C values in the source domain do not correspond to

the most accurate C value for domain adaptation. Specifically, in the Av97 source

domain (cyan bars), C = 1000 is optimal, but C = 0.01 is optimal in the Av97⇒Hyp11

scenario. C = 1000 is also optimal in the Hyp11 source domain (red bars), but C = 1

is optimal in the Hyp11⇒Av97 (maroon bars) scenario. In the R-space, we observe

that C = 1000 is optimal in both the Av97⇒Hyp11 and Hyp11⇒Av97 scenarios,

and also in the Av97 and Hyp11 source domains. Additionally, we observe that the

accuracies in the source domains and in the domain adaptation scenarios follow similar

trends in the R-space.

The results shown in Figure 6.5 suggest that we can perform more accurate model
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Abstract
Support vector machine (SVM) is a popular technique for classification.

However, beginners who are not familiar with SVM often get unsatisfactory

results since they miss some easy but significant steps. In this guide, we propose

a simple procedure, which usually gives reasonable results.

1 Introduction

SVM (Support Vector Machine) is a useful technique for data classification. Even

though people consider that it is easier to use than Neural Networks, however, users

who are not familiar with SVM often get unsatisfactory results at first. Here we

propose a “cookbook” approach which usually gives reasonable results.

Note that this guide is not for SVM researchers nor do we guarantee the best

accuracy. We also do not intend to solve challenging or difficult problems. Our

purpose is to give SVM novices a recipe to obtain acceptable results fast and easily.

Although users do not need to understand the underlying theory of SVM, nev-

ertheless, we briefly introduce SVM basics which are necessary for explaining our

procedure. A classification task usually involves with training and testing data which

consist of some data instances. Each instance in the training set contains one “target

value” (class labels) and several “attributes” (features). The goal of SVM is to pro-

duce a model which predicts target value of data instances in the testing set which

are given only the attributes.

Given a training set of instance-label pairs (xi, yi), i = 1, . . . , l where xi ∈ Rn and

y ∈ {1,−1}l, the support vector machines (SVM) (Boser, Guyon, and Vapnik 1992;

Cortes and Vapnik 1995) require the solution of the following optimization problem:

min
w,b,ξ

1

2
w

T
w + C

l�

i=1

ξi

subject to yi(w
T φ(xi) + b) ≥ 1− ξi, (1)

ξi ≥ 0.

1

A Practical Guide to Support Vector Classification

Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin

Department of Computer Science and

Information Engineering

National Taiwan University

Taipei 106, Taiwan (cjlin@csie.ntu.edu.tw)

Abstract
Support vector machine (SVM) is a popular technique for classification.

However, beginners who are not familiar with SVM often get unsatisfactory

results since they miss some easy but significant steps. In this guide, we propose

a simple procedure, which usually gives reasonable results.

1 Introduction

SVM (Support Vector Machine) is a useful technique for data classification. Even

though people consider that it is easier to use than Neural Networks, however, users

who are not familiar with SVM often get unsatisfactory results at first. Here we

propose a “cookbook” approach which usually gives reasonable results.

Note that this guide is not for SVM researchers nor do we guarantee the best

accuracy. We also do not intend to solve challenging or difficult problems. Our

purpose is to give SVM novices a recipe to obtain acceptable results fast and easily.

Although users do not need to understand the underlying theory of SVM, nev-

ertheless, we briefly introduce SVM basics which are necessary for explaining our

procedure. A classification task usually involves with training and testing data which

consist of some data instances. Each instance in the training set contains one “target

value” (class labels) and several “attributes” (features). The goal of SVM is to pro-

duce a model which predicts target value of data instances in the testing set which

are given only the attributes.

Given a training set of instance-label pairs (xi, yi), i = 1, . . . , l where xi ∈ Rn and

y ∈ {1,−1}l, the support vector machines (SVM) (Boser, Guyon, and Vapnik 1992;

Cortes and Vapnik 1995) require the solution of the following optimization problem:

min
w,b,ξ

1

2
w

T
w + C

l�

i=1

ξi

subject to yi(w
T φ(xi) + b) ≥ 1− ξi, (1)

ξi ≥ 0.

1

A Practical Guide to Support Vector Classification

Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin

Department of Computer Science and

Information Engineering

National Taiwan University

Taipei 106, Taiwan (cjlin@csie.ntu.edu.tw)

Abstract
Support vector machine (SVM) is a popular technique for classification.

However, beginners who are not familiar with SVM often get unsatisfactory

results since they miss some easy but significant steps. In this guide, we propose

a simple procedure, which usually gives reasonable results.

1 Introduction

SVM (Support Vector Machine) is a useful technique for data classification. Even

though people consider that it is easier to use than Neural Networks, however, users

who are not familiar with SVM often get unsatisfactory results at first. Here we

propose a “cookbook” approach which usually gives reasonable results.

Note that this guide is not for SVM researchers nor do we guarantee the best

accuracy. We also do not intend to solve challenging or difficult problems. Our

purpose is to give SVM novices a recipe to obtain acceptable results fast and easily.

Although users do not need to understand the underlying theory of SVM, nev-

ertheless, we briefly introduce SVM basics which are necessary for explaining our

procedure. A classification task usually involves with training and testing data which

consist of some data instances. Each instance in the training set contains one “target

value” (class labels) and several “attributes” (features). The goal of SVM is to pro-

duce a model which predicts target value of data instances in the testing set which

are given only the attributes.

Given a training set of instance-label pairs (xi, yi), i = 1, . . . , l where xi ∈ Rn and

y ∈ {1,−1}l, the support vector machines (SVM) (Boser, Guyon, and Vapnik 1992;

Cortes and Vapnik 1995) require the solution of the following optimization problem:

min
w,b,ξ

1

2
w

T
w + C

l�

i=1

ξi

subject to yi(w
T φ(xi) + b) ≥ 1− ξi, (1)

ξi ≥ 0.

1

A Practical Guide to Support Vector Classification

Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin

Department of Computer Science and

Information Engineering

National Taiwan University

Taipei 106, Taiwan (cjlin@csie.ntu.edu.tw)

Abstract
Support vector machine (SVM) is a popular technique for classification.

However, beginners who are not familiar with SVM often get unsatisfactory

results since they miss some easy but significant steps. In this guide, we propose

a simple procedure, which usually gives reasonable results.

1 Introduction

SVM (Support Vector Machine) is a useful technique for data classification. Even

though people consider that it is easier to use than Neural Networks, however, users

who are not familiar with SVM often get unsatisfactory results at first. Here we

propose a “cookbook” approach which usually gives reasonable results.

Note that this guide is not for SVM researchers nor do we guarantee the best

accuracy. We also do not intend to solve challenging or difficult problems. Our

purpose is to give SVM novices a recipe to obtain acceptable results fast and easily.

Although users do not need to understand the underlying theory of SVM, nev-

ertheless, we briefly introduce SVM basics which are necessary for explaining our

procedure. A classification task usually involves with training and testing data which

consist of some data instances. Each instance in the training set contains one “target

value” (class labels) and several “attributes” (features). The goal of SVM is to pro-

duce a model which predicts target value of data instances in the testing set which

are given only the attributes.

Given a training set of instance-label pairs (xi, yi), i = 1, . . . , l where xi ∈ Rn and

y ∈ {1,−1}l, the support vector machines (SVM) (Boser, Guyon, and Vapnik 1992;

Cortes and Vapnik 1995) require the solution of the following optimization problem:

min
w,b,ξ

1

2
w

T
w + C

l�

i=1

ξi

subject to yi(w
T φ(xi) + b) ≥ 1− ξi, (1)

ξi ≥ 0.

1

A Practical Guide to Support Vector Classification

Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin

Department of Computer Science and

Information Engineering

National Taiwan University

Taipei 106, Taiwan (cjlin@csie.ntu.edu.tw)

Abstract
Support vector machine (SVM) is a popular technique for classification.

However, beginners who are not familiar with SVM often get unsatisfactory

results since they miss some easy but significant steps. In this guide, we propose

a simple procedure, which usually gives reasonable results.

1 Introduction

SVM (Support Vector Machine) is a useful technique for data classification. Even

though people consider that it is easier to use than Neural Networks, however, users

who are not familiar with SVM often get unsatisfactory results at first. Here we

propose a “cookbook” approach which usually gives reasonable results.

Note that this guide is not for SVM researchers nor do we guarantee the best

accuracy. We also do not intend to solve challenging or difficult problems. Our

purpose is to give SVM novices a recipe to obtain acceptable results fast and easily.

Although users do not need to understand the underlying theory of SVM, nev-

ertheless, we briefly introduce SVM basics which are necessary for explaining our

procedure. A classification task usually involves with training and testing data which

consist of some data instances. Each instance in the training set contains one “target

value” (class labels) and several “attributes” (features). The goal of SVM is to pro-

duce a model which predicts target value of data instances in the testing set which

are given only the attributes.

Given a training set of instance-label pairs (xi, yi), i = 1, . . . , l where xi ∈ Rn and

y ∈ {1,−1}l, the support vector machines (SVM) (Boser, Guyon, and Vapnik 1992;

Cortes and Vapnik 1995) require the solution of the following optimization problem:

min
w,b,ξ

1

2
w

T
w + C

l�

i=1

ξi

subject to yi(w
T φ(xi) + b) ≥ 1− ξi, (1)

ξi ≥ 0.

1
Linear Model in kernel space φ

Soft-margin regularization

• Optimal C in source 
domain suboptimal for 
domain adaptation

• Source domain C 
optimal for domain 
adaptation in R-space

• C selected via cross validation 
on source domain data

Av97⇒Hyp11 Av97

Hyp11⇒Av97 Hyp11

SVM C
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Unsupervised Domain Adaptation 
Intraclass Distance and Domain Adaptation Accuracy
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Wavelength (µm)

Av97⇒Hyp11
Low source class variance + 
High target class variance =
Source⇒Target accuracy = Low

Hyp11⇒Av97
High source class variance + 
Low target class variance =
Source⇒Target accuracy = High 

R-space accuracy limited 
by the amount of target 
variance the source-
selected pivots can explain

Proposed Improvements:
1. Pick better pivots
2. Improve manifold alignment

Why >10% difference in Av97⇒Hyp11 vs. Hyp11⇒Av97 accuracy?
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Unsupervised Domain Adaptation 
Picking Better Pivots with the Sobolev Metric

47

Goal: exploit functional relationships to improve pivot selection
Approach: use Sobolev measure in R-transform 

Select target pivot pi
T = xT whose first κ derivates are most 

similar to source pivot pi
S ∈ PS

194

that exploit characteristics of spectral data. Here, we focus on applying the Sobolev

metric (Equation (3.12)) to the task of target pivot selection in the MCCL algorithm.

6.7.1 Methodology

We use the following transformation to map a sample xD
, D ∈ S, T , to a new feature

space defined by distances between the derivates of xD
and pivots pD

i ∈ PD
(we

hereafter refer to this feature space as the “R
κ
-space”).

R
κ
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where d
(l)
(xi,xj) is the Euclidean distance between the lth derivatives of xi and xj , as

defined in Equation (3.13). When κ = 0, Equation (6.9) is equivalent to Equation (5.1).

The ith entry in the resulting Q-dimensional vector produced by the R
κ
function gives

the likelihood of distinguishing sample xD
from pivot pD

l with respect to the pivot set

PD
, averaged over derivates {0, . . ., κ}. We can now update the MCCL target pivot

selection rule (Algorithm 6.1, Step 7) as follows

� = argmin
j

�Rκ
(pS

i , P
S
)− R

κ
(xT

j , P
S
)�, j ∈ {1, . . . ,M} (6.10)

to select target pivots pT
i = xT

� that best preserve the functional relationships between

the target pivots and source pivots pS
i ∈ P S

. For reasons that will be made clear

later, we stress that we only use Equation (6.10) during pivot selection, and not

for translating the source and target samples to the R-space during training (i.e.,

Algorithm 6.1, Step 12).
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Unsupervised Domain Adaptation
Functional Pivot Selection Classification Accuracy
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MARTIAL Algorithm 

 For each class k

Source Data in Target 
Feature Space XST

Xk
S T= Tk

imp
 Xk

S

Unsupervised Domain Adaptation
Multiclass Manifold Alignment with MARTIAL

49

Current manifold alignment 
methods: 
‣ assume labeled pivots available
‣ ignore class-specific distinctions

MAnifold Reconciliation Through 
Iterative ALignment (MARTIAL)
‣Uses both labeled and unlabeled 

data to align source/target manifolds
‣Computes per-class transformations 

from source to target feature space 
using MCCL-selected pivots
‣Extends TRIAL protein structure 

alignment algorithm [Venkateswaran 
et al.] to high-dim, multiclass 
manifold alignment problems

Apply TRIAL to {Pk
S  , Pk

T , Yk
P }

Seed

(Tk
seed, P k

seed)

Align

(Tk
align,P k

align)

Improve

(Tk
imp.,P k

imp)

Select Pool of Candidate Pivots with MCCL
P = {Pk

S , Pk
T
 , Yk

P }k=1
K

Labeled Source 
Data (XS,YS)

Unlabeled 
Target Data XT

Unlabeled 
Source Data XSu

[Bue and Jermaine,  WHISPERS 2013]
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Av97 Source 
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MARTIAL Accuracy vs. Qk in R-space
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208

transformations. The R-space classification results using MARTIAL are also better

than those given in Figure 6.9 for all Qk �= 100. Not surprisingly, as the classification

accuracies in the Hyp11⇒Av97 scenario are already high, the RS and the MARTIAL

RAlign and RImp. cases produce comparable, but not significantly better accuracies

(±1%). We also observe that the most-accurate MARTIAL results shown in Figure 6.10

approach the supervised domain adaptation (R-ST) results reported in Table 6.1, with

MARTIAL yielding 85.10% vs. 86.10% R-ST accuracy in the Av97⇒Hyp11 scenario,

and 97.61% vs. 99.18% R-ST in the Hyp11⇒Av97 scenario.
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Fig. 2. Classification accuracy vs. number of seed samples Qi for
the Av97⇒Hyp11(left) and Hyp11⇒Av97(right) scenarios

Figure 3 gives the accuracy vs. the number of seed samples Qi

for the Av97⇒Hyp11(left) and Hyp11⇒Av97(right) scenarios for
the MCCL algorithm applied in the original source feature space
(MCCL) vs. the MARTIAL seed (MCCLseed) and align (MCCLalign)
features.
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Fig. 3. Classification accuracy vs. number of seed samples Qi for
the Av97⇒Hyp11(left) and Hyp11⇒Av97(right) scenarios

Conclusions

In this work, we introduced the MARTIAL algorithm for multiclass
domain adaptation via manifold alignment. By learning a set of
transformations for each class using a variant of the TRIAL algo-
rithm, we demonstrated 5-10% improvements in classification ac-
curacy over the manifold alignment using procrustes analysis tech-
nique, and 2-5% improvements over our previously-proposed do-
main adaptation technique, MCCL.
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Fig. 3. Classification accuracy vs. number of seed samples Qi for
the Av97⇒Hyp11(left) and Hyp11⇒Av97(right) scenarios

Conclusions

In this work, we introduced the MARTIAL algorithm for multiclass
domain adaptation via manifold alignment. By learning a set of
transformations for each class using a variant of the TRIAL algo-
rithm, we demonstrated 5-10% improvements in classification ac-
curacy over the manifold alignment using procrustes analysis tech-
nique, and 2-5% improvements over our previously-proposed do-
main adaptation technique, MCCL.

References

[1] Wonkook Kim, Melba M Crawford, and Joydeep Ghosh, “Spa-
tially Adapted Manifold Learning for Classification of Hy-
perspectral Imagery with Insufficient Labeled Data,” Proc.

2008 International Geosci. and Sens. Symposium (IGARSS08),
2008.

[2] Claudio Persello and Lorenzo Bruzzone, “A novel active learn-
ing strategy for domain adaptation in the classification of re-
mote sensing images,” IEEE Geoscience and Remote Sensing

Symposium, pp. 3720–3723, 2011.

[3] Suju Rajan, Joydeep Ghosh, and Melba M Crawford, “Exploit-
ing Class Hierarchies for Knowledge Transfer in Hyperspectral
Data,” IEEE Trans. on Geoscience and Remote Sensing, vol.
44, no. 11, pp. 3408–3417, 2006.

[4] Wonkook Kim and Melba M Crawford, “Adaptive classifica-
tion for hyperspectral image data using manifold regularization
kernel machines,” Geoscience and Remote Sensing, 2010.

[5] Lorenzo Bruzzone and Mattia Marconcini, “Domain Adap-
tation Problems: A DASVM Classification Technique and a
Circular Validation Strategy,” IEEE Trans. on Pattern Analysis

and Machine Intelligence, vol. 32, no. 5, pp. 770–787, 2010.

[6] Hsiuhan Lexie Yang and Melba M Crawford, “Manifold Align-
ment For Classification Of Multitemporal Hyperspectral Data,”
Proc. IEEE WHISPERS, pp. 1–4, Apr. 2011.

[7] Jayendra Venkateswaran, Bin Song, Tamer Kahveci, and Chris
Jermaine, “TRIAL: A Tool for Finding Distant Structural Sim-
ilarities,” IEEE/ACM Transactions on Computational Biology

and Bioinformatics, vol. 8, no. 3, pp. 819–831, 2011.

[8] W Kabsch, “A discussion of the solution for the best rotation
to relate two sets of vectors,” Acta Crystallographica Section

A: Crystal Physics, vol. 34, pp. 827–828, Sept. 1978.

[9] Brian D Bue and David R Thompson, “Multiclass Continuous
Correspondence Learning,” NIPS Domain Adaptation Work-

shop, Dec. 2011.

[10] Fred A Kruse, JW Boardman, and JF Huntington, “Compari-
son of airborne hyperspectral data and EO-1 Hyperion for min-
eral mapping,” IEEE Trans. on Geoscience and Remote Sens-

ing, vol. 41, no. 6, pp. 1388–1400, 2003.

[11] David R Thompson, Lukas Mandrake, Martha S Gilmore, and
R Castaño, “Superpixel endmember detection,” IEEE Transac-

tions on Geoscience and Remote Sensing, pp. 1–19, Jun 2010.

[12] Chang Wang and S Mahadevan, “Manifold alignment using
Procrustes analysis,” Proceedings of the 25th international

conference on Machine learning, pp. 1120–1127, 2008.

[13] C.C Chang and C.J Lin, “LIBSVM: a library for support vec-
tor machines,” ACM Transactions on Intelligent Systems and

Technology (TIST), vol. 2, no. 3, pp. 27, 2011.

!"#$%&

!"$'%&

!"$$%&

!"('%&

!"($%&

!")'%&

!")$%&

*!& '!& +!& ,!& %!& #!& $!& (!& )!& *!!&

R        R        R        R        Source Seed Align Improve

Figure 6.10 : R-space classification accuracy vs. number of seed samples Qk for the

Av97⇒Hyp11 (left) and Hyp11⇒Av97 (right) scenarios using source samples from the

original source feature space (RS, green �) vs. the MARTIAL seed (RSeed, purple ×),

align (RAlign, turquoise ∗) and improve (RImp., orange ◦) feature spaces. We observe

comparable or better performance in the R-space using the feature spaces produced

by MARTIAL over the original feature space.

Table 6.5 provides a summary of the classification accuracies of each method,

averaged over the range of Qk values. We see that the MARTIAL feature space

produced by the Align step yield the most accurate results in the Av97⇒Hyp11

Qk Qk

209

scenario, and perform comparably to MCCL in the Hyp11⇒Av97 scenario. We also

note that the accuracies produced after applying the Align step are typically equal

or slightly better than those produced after the subsequent Improve step. This may

be somewhat surprising, as one may expect that incorporating additional samples

in the Improve step would produce a more robust alignment between the domains.

However, since the pivots from each class are highly-correlated, using a large number of

redundant pivots often produces worse results than using a smaller set of less-redundant

pivots.

ST Proc. Seed Align Imp. RS RSeed RAlign RImp.

Av97⇒Hyp11 71.49 73.29 81.69 82.35 81.67 80.27 83.10 83.20 83.08

Hyp11⇒Av97 93.99 82.75 93.43 94.28 94.05 95.82 92.69 95.11 94.36

Table 6.5 : Average accuracy over the range of selected Qk values for each technique.

The first and second most accurate results are given in red and blue italics, respectively.

209

scenario, and perform comparably to MCCL in the Hyp11⇒Av97 scenario. We also

note that the accuracies produced after applying the Align step are typically equal

or slightly better than those produced after the subsequent Improve step. This may

be somewhat surprising, as one may expect that incorporating additional samples

in the Improve step would produce a more robust alignment between the domains.

However, since the pivots from each class are highly-correlated, using a large number of

redundant pivots often produces worse results than using a smaller set of less-redundant

pivots.

ST Proc. Seed Align Imp. RS RSeed RAlign RImp.

Av97⇒Hyp11 71.49 73.29 81.69 82.35 81.67 80.27 83.10 83.20 83.08

Hyp11⇒Av97 93.99 82.75 93.43 94.28 94.05 95.82 92.69 95.11 94.36

Table 6.5 : Average accuracy over the range of selected Qk values for each technique.

The first and second most accurate results are given in red and blue italics, respectively.

MARTIAL
R-spaces

Original 
R-space

10-13% improvement over 
Procrustes Alignment

Up to 3% improvement 
over original R-Space

12% improvement 
over baseline (ST)

no degradation / 
small  improvement 
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Intra-domain
‣ Hybrid similarity measures 

improve classification accuracy 
given several complimentary 
notions of similarity

‣ Regularized LDA produces 
state-of-the-art results for low-
rank Mahalanobis metric 
learning, at a fraction of the 
computational cost

Inter-domain
‣ Domain adaptation performance = 

limited by 
I. similarity and separability of source 

and target domains
II.differences in intra-class variance

‣ Capturing multiclass structure with 
RelTrans often significantly increases 
domain adaptation accuracy over 
baseline and related techniques 

Material Identification and Similarity measures
‣ Adaptive similarity measures can substantially improve material 

identification results over conventional techniques often at reduced 
computational expense 

Thank you
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‣ Library-based Material Identification, CICR similarity measure

‣ B. Bue, E. Merényi, and B. Csathó. Automated labeling of materials in 
hyperspectral imagery. IEEE Transactions on Geoscience and Remote 
Sensing, 48(11):4059–4070, 2010.

‣ B. Bue, E. Merényi, and B. Csathó. Automated Labeling of Segmented 
Hyperspectral Imagery Via Spectral Matching. IEEE WHISPERS, Aug. 2009.

‣ Adaptive similarity measures for Intra-domain Material Identification

‣ Adaptive CICR: 
B. Bue and E. Merényi. An adaptive similarity measure for classification of 
hyperspectral signatures. IEEE Geoscience and Remote Sensing Letters, 2012.

‣ LDA-based Mahalanobis metrics for Image Segmentation:
B. D. Bue, DR Thompson, M. Gilmore, and R. Castaño, “Metric Learning for 
Hyperspectral Image Segmentation,” IEEE WHISPERS, Jun. 2011.
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‣ Domain Adaptation for Inter-domain Material Identification

‣ Supervised:

‣ B. D. Bue, E. Merényi, and B. Csathó, “An Evaluation of Class Knowledge 
Transfer from Real to Synthetic Imagery,” IEEE WHISPERS, Jun. 2011.

‣ B. D. Bue and E. Merényi, “Using spatial correspondences for 
hyperspectral knowledge transfer: evaluation on synthetic data,” IEEE 
WHISPERS, Jun. 2010.

‣ Unsupervised:

‣ B. D. Bue and D. R. Thompson, “Multiclass Continuous Correspondence 
Learning,” NIPS Domain Adaptation Workshop, Dec. 2011.

‣ B. D. Bue and C. Jermaine. “Multiclass Domain Adaptation with Iterative 
Manifold Alignment”. Workshop on Hyperspectral Image and Signal 
Processing: Evolution in Remote Sensing (WHISPERS), Jun. 2013 (to 
appear).
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Feature-based vs. Similarity-based Classification 

60

Feature-based
Classification

• Features define 
inference rules
• Naive Bayes
• Multilayer Perceptron
• Graphical Models
• Decision Trees

Similarity-based
Classification

• Similarities define 
inference rules

• k-Nearest-Neighbor (kNN)
• Learning Vector 

Quantization (LVQ)
• Support Vector Machine 

(SVM)

Test 
Predictions

• Predictions based 
on similarity w.r.t. 
prototypes 
derived from 
training samples

Test 
Predictions

• Predictions based 
on relevance of 
features w.r.t. 
class models 
derived from 
training samples

Feature-based Classification
Representation 

Learning

• Learn improved feature 
representation 
• Feature selection/weighting
• Dimensionality reduction

• Low(er)-dimensional
• More informative features

Similarity-based Classification
Similarity 
Learning

• Learn similarity measure 
to compare samples

• Learned similarity 
measure <=> learned 
feature representation

Input Data
(features)

• “Original” 
representation

• High-dimensional
• Noisy / redundant 
features

Similarity/Distance Learning Representation Learning

✓
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78

dimensionality reduction techniques principal components analysis (PCA), selecting

the top m principal components that explain 99% of the observed variance, and

LDAFW , where we map features to a K − 1 dimensional space using regularized

feature-weighted Linear Discriminant Analysis (described in detail later in Chapter 4).

We mimic the methodology described in Section 3.1.3, and evaluate the classification

accuracy in each of the Ocean City scenarios using five cross-validation folds. As

before, we evenly split the data from each scenario into training and test sets, and

compute the vector of feature weights w, or, in the case of PCA and LDA, the

transformation T (x) : Rn → RK−1, using the (CI) training set, and then classify

the weighted/transformed test spectra using the MinDist classifier. For the RFE, L1

and LDAFW algorithms, we select the scalar regularization parameter γ from the set

{10−10, . . . , 10−2, 0.2, . . . , 0.8, 1− 10−2, . . . , 1− 10−10} that yields the highest accuracy

on the training data.

Baseline Feature Selection/Dimensionality Reduction dCICR

dCI dCR χ2
25 χ2

50 RFE L1 PCA LDAFW LDA LS
Minor 0.8866 0.6580 0.8376 0.8875 0.8848 0.8872 0.8819 0.9172 0.9032 0.9055

0.0076 0.0208 0.0090 0.0083 0.0114 0.0163 0.0099 0.0095 0.0049 0.0065

Major 0.9250 0.7750 0.8493 0.8917 0.9330 0.8638 0.9203 0.9714 0.9721 0.9754

0.0186 0.0101 0.0093 0.0143 0.0159 0.0573 0.0127 0.0062 0.0075 0.0029

Combined 0.8654 0.6730 0.8302 0.8441 0.8617 0.8310 0.8672 0.9176 0.9076 0.9207

0.0069 0.0075 0.0064 0.0060 0.0056 0.0125 0.0063 0.0049 0.0111 0.0045

Table 3.2 : Comparison of dCICR results to feature selection methods. The best and

second-best performing techniques (excluding dCICR LS) for each scenario are given in

red and blue italics, respectively. LDAFW yields the best overall performance, though

dCICR LDA performs competitively at lower computational cost.

Table 3.2 gives the classification accuracies for the baseline dCI, dCR, and dCICR

measures in comparison to the feature selection and dimensionality reduction tech-

niques. Perhaps unsurprisingly, LDAFW gives the best overall performance across the

three scenarios, as it can exploit discriminative characteristics of individual spectral

χ2 p-best features, according to χ2 criterion

RFE Recursive Feature Elimination [Guyon et al., 2002]

L1 Features weighted according to L1-penalized GLM

PCA PCA components explaining 99% of variance

LDAFW Feature-weighted LDA, T(x): Rn → RK-1

p

MinDist Accuracy 
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77

slightly (1-2%) more accurate results than the unweighted Sobolev measure. However,

the improvements in classification accuracy between the LDA and unweighted Sobolev

measures are not nearly as significant as previously observed using our LDA-based

technique with the dCICR measure. Moreover, we observe that both the unweighted

and LDA-based Soboev measures decrease in accuracy as κ increases. This reduction

in accuracy with respect to increasing κ is partially explained by the poor performance

by the d(l)-based measures for the larger l values, indicating that the higher-order

derivates are more ambiguous than the lower-order derivates. However, despite the

ambiguity of the higher-order derivates, the LS-based Sobolev measure becomes more

accurate with increasing κ values.

d(l) dSobolev, κ = 1 dSobolev, κ = 2 dSobolev, κ = 3
d(0) d(1) d(2) d(3) UW LDA LS UW LDA LS UW LDA LS

Minor 0.8863 0.7717 0.6362 0.6364 0.9047 0.9108 0.9210 0.8808 0.9090 0.9254 0.8627 0.9052 0.9268
0.0134 0.0128 0.0067 0.0104 0.0134 0.0052 0.0043 0.0090 0.0077 0.0025 0.0084 0.0121 0.0066

Major 0.9256 0.9299 0.8857 0.8759 0.9616 0.9659 0.9707 0.9630 0.9703 0.9830 0.9543 0.9688 0.9804
0.0108 0.0093 0.0104 0.0110 0.0087 0.0120 0.0063 0.0088 0.0178 0.0022 0.0085 0.0049 0.0031

Combined 0.8698 0.8276 0.7219 0.7082 0.9123 0.9121 0.9257 0.8976 0.9011 0.9300 0.8925 0.8967 0.9321
0.0056 0.0137 0.0077 0.0090 0.0071 0.0070 0.0021 0.0079 0.0081 0.0045 0.0087 0.0075 0.0052

Table 5.2 : Mean and standard deviation of classification accuracy on Ocean City
spectra obtained with the d(l) measures for derivates l ∈ 0, 1, 2, 3, and with the dSobolev

measure for κ ∈ {1, 2, 3}.

Minor
d(0) d(1) d(2) d(3)

d(0) 1.0000 0.2128 -0.0574 -0.0629
d(1) 0.2128 1.0000 0.8921 0.8904
d(2) -0.0574 0.8921 1.0000 0.9706
d(3) -0.0629 0.8904 0.9706 1.0000

Major
d(0) d(1) d(2) d(3)

1.0000 0.7936 0.7057 0.6707
0.7936 1.0000 0.9672 0.9511
0.7057 0.9672 1.0000 0.9961
0.6707 0.9511 0.9961 1.0000

Combined
d(0) d(1) d(2) d(3)

1.0000 0.8235 0.7318 0.7066
0.8235 1.0000 0.9709 0.9592
0.7318 0.9709 1.0000 0.9966
0.7066 0.9592 0.9966 1.0000

Table 5.3 : Correlation coefficients for d(l)-based distances from each labeled sample
to its class mean.

The reduced classification accuracy using the unweighted and LDA-based Sobolev

measures with large κ values can be explained by considering both the performance of
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The reduced classification accuracy using the unweighted and LDA-based Sobolev

measures with large κ values can be explained by considering both the performance of

Per-derivate Accuracy: 

Sobolev Accuracy (UW=equal αl  weights, LS=line search): 

Baseline = d(0)

(Euclidean distance)

‣ LDA better than UW, but usually only by ≤1%
‣ UW, LDA accuracy decreases as κ increases
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MInt(Sa,Sb)Dif(Sa,Sb)

Image = 8-connected graph weighted by d(xi,xj) between adjacent pixels xi and xj

Segments connected by growing minimum spanning tree with agglomerative clustering

Segment merging criteria:   
cross segment distance Dif(Sa,Sb) > minimum internal weight MInt(Sa,Sb)

# segments depends on:  d(xi,xj) and b (small b = many segments,
                                                                 large b = few segments)

Feature-weighted Metric Learning
Graph-based Segmentation Algorithm

63

[Felzenszwalb 2004]

118

MInt(Sa, Sb) = min

�
Int(Sa) +

b

|Sa|
, Int(Sb) +

b

|Sb|

�
(4.28)

Larger b values cause a preference for larger segments, but is not a minimum segment

size – smaller segments are allowed when there is a sufficiently large difference between

spatially neighboring segments. However, in some cases, a minimum segment size is

desirable, so we merge small segments below a user-defined threshold t ≥ 1 with their

spectrally-closest neighbors.

We attempt a superpixel segmentation in which the image is conservatively over-

segmented; that is, we accept that single surface features may be split into multiple

segments, but try to ensure that each individual segment - or superpixel - has homo-

geneous mineralogy [Thompson et al., 2010]. Figure 4.7 gives example superpixels

produced by coarse vs. fine segmentations. By analyzing superpixels rather than

individual pixels, we reduce the number of effective spectra to analyze in a given image,

and potentially mitigate issues caused by instrument noise and intraclass variability.

Example Pixel! Fine Superpixel! Coarse Superpixel!

Target Image!
(CRISM 3e12)!

Figure 4.7 : Segmentation of an image patch from CRISM image 3e12 (described

in detail in Section 4.2). Fine segmentations capture distinctions between materials

better than coarse segmentations, but are more susceptible to noisy features. Coarse

segmentations are less susceptible to noise and produce fewer segments to analyze, but

may blur important class distinctions. Figure adapted from [Thompson et al., 2010].
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Feature-weighted Metric Learning
Diagonals of Learned Mahalanobis Matrices

64
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Comparisons Between Learned Mahalanobis Matrices
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Figure 4.6 : Class means for CRISM image 3fb9 (top) vs. diagonals of Mahalanobis
matrices computed by each metric learning algorithm for Nj = 100 samples/class.
Several prominent peaks which occur for multiple algorithms are indicated by red
dotted vertical lines.
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Segmentation Results: CRISM Image 863e
Euclidean vs. LDA and ITML Metrics

65

123

3e
12

3f
b9

# segments (test)# segments (train)

86
3e

Figure 4.10 : Impurity ratios for EUC (green), LDA (yellow) and ITML (magenta)
segmentations vs. number of segments on training (left) and testing (right) images.
LDA produces the smallest number of impure superpixels, followed by ITML and
EUC.

H(class|segment) (Train/Test)

EUC LDA ITML

3e12 0.017/0.068 0.015/0.059 0.019/0.066
3fb9 0.088/0.380 0.050/0.242 0.097/0.354
863e 0.047/0.004 0.018/0.001 0.031/0.002

Table 4.3 : Average H(class|segment) for
each image and similarity measure. Green
and red fonts indicate the best and worst
performing metrics, respectively.

Impurity (Train/Test)

EUC LDA ITML

3e12 0.018/0.062 0.012/0.057 0.020/0.060
3fb9 0.066/0.296 0.037/0.195 0.075/0.294
863e 0.068/0.032 0.040/0.012 0.061/0.027

Table 4.4 : Average impurity ratios for
each image and similarity measure. Green
and red fonts indicate the best and worst
performing metrics, respectively.

learned metric will often suppress. ITML yields similar performance to the Euclidean

distance for training images 3e12 and 3fb9, which is likely because the quantity of

training samples is small for these two images. On image 863e, with training samples

belonging to 5 material classes, ITML approaches the performance of LDA. This is also

121

range of b values in 10{−4,...,1} and provide overall statistics for segmentations produced

by each metric on that range. We chose this range because the number of superpixels

produced by each metric followed a similar trend for all of the images we studied. We

focus on segmentations that produce 200-1250 superpixels, as segmentations with few

superpixels tend to inadequately capture morphological characteristics of the imagery

we study, while segmentations with large quantities of superpixels are more sensitive

to noise and insignificant differences in spectra. We ignore superpixels consisting of

less than t = 50 pixels, as they tend to be unstable and noisy with respect to the

training classes. Ignoring these small superpixels is done for evaluation purposes only,

as it allows for a more consistent evaluation of the resulting segmentation maps.

4.4.1 Experimental Results

Class (# pixels) EUC LDA ITML

FeMg Smectite (6443) 26 49 48

Kaolinite (4051) 98 99 99

Montmorillonite (10901) 11 31 17

Nontronite (4753) 37 52 40

Neutral Region (115225) 97 99 98

Average 53 66 60

Table 4.2 : Average pure pixels / segment
for Euclidean, LDA and ITML-based seg-
mentations of image 863e (Figure 4.9). Best
and worst average per-class accuracy given
in green and red font, respectively.

Figure 4.9 gives a set of segmentation

maps for image 863e where the Eu-

clidean and LDA/ITML-learned metrics

produced a comparable number of seg-

ments. The number of segments for the

train/test images are provided for each

segmentation. Visually, the LDA-based

segmentation produces segments that bet-

ter match the underlying morphology of

the image data. The Euclidean-based seg-

mentation, and to a lesser degree, the ITML-based segmentation, both suffer from

column striping artifacts as noisy bands are not well compensated for using these

metrics. This is also reflected in the percentages of pure pixels / segment given in

Impurity Ratios (per pixel)

Average Pure Superpixels
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Supervised Domain Adaptation
Outlier Detection Classes
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Synthetic hyperspectral (HYDICE, 210 bands) 
=> Synthetic multispectral (MASTER, 12 bands) 

Synthetic hyperspectral (HYDICE) 
=> Real hyperspectral (AVIRIS)

150
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Figure 5.10 : AVIRISOC class mean spectra excluded from source classes in the outlier

detection setting. These spectra represent 46% of the total target samples in the OD

setting.

DA (KS = KT
) OD (KS < KT

)

D
2

G
AVIRISOC D

2

G
vs. AVIRISOC D

2

G
AVIRISOC D

2

G
vs. AVIRISOC

MinDist 98 83 45 92 82 26

MinDistnthresh 98 83 45 [100] 92 82 31 [77]

RelSim 98 83 72 92 82 43

RelSimRT 98 83 72 [100] 92 82 74 [100]

Table 5.5 : Domain adaptation (KS = KT ) and outlier detection (KS < KT ) results

for source image D
2

G
vs. target image AVIRISOC before/after thresholding. For each of

the two settings, the intra-domain classification accuracies for each of the AVIRISOC

and D
2

G
images are given in the shaded columns. Values in square brackets give

the percentage of correctly flagged unknown samples. No target samples belong to

unknown classes in the domain adaptation (KS = KT ) setting (and thus, no samples

should be flagged), while 461 of the 1000 target samples are unknowns in the outlier

detection setting (KS < KT ).

settings. Additionally, we observe a 138.7% relative improvement with RelSimRT over

MinDistnthresh.

The per-class accuracies for MinDist and RelSim in the DA setting are shown

in Table 5.6. The RelSim misclassifications are also generally more intuitive than

MinDist. For instance, MinDist misclassifies all “T: Roof, Gravel, Gray” samples as

146

Figure 5.7 : Mean spectra for manually-selected pivot samples between D
1
(magenta),

D
2
G (yellow) and D

2
B (red) images. Spectra from images D

1
and D

2
G are similar after

ELM atmospheric calibration, while those from the poorly-calibrated D
2
B image are

considerably distorted with respect to the D
2
G spectra.

N
or

m
al

iz
ed

 R
ef

le
ct

an
ce

Figure 5.8 : Mean spectra of target classes in D
1
image excluded from the source data

representing 44% of the total target samples in the OD setting.

5.7.2 Experimental Results

Table 5.4 summarizes the results in the DA and OD settings using the D
2
G or D

2
B

images as source data to classify spectra from the D
1
image. The intra-image (i.e.,

AVIRIS Outlier ClassesMASTER Outlier Classes
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Supervised Domain Adaptation 
Radiance to Reflectance EML Approximation

67

Empirical line calibration 2657

Figure 3. Actual and predicted ground re¯ectance spectra for the (a) grass (W) and (b) grass
(E) targets using the two-point approach.

spectra of the calibration targets around 450nm (®gure 2(a)) had resulted in a poorly
determined prediction equation (®gure 4) for this waveband and, thus, a large error
in predicted re¯ectance. A three-target approach was attempted, therefore, using the
asphalt, concrete and grass (E). Linear regression was used to derive the prediction
equations which were found to have regression coe�cients greater than 0.97. The
prediction equations were applied to the radiance data of the grass (W) target
(®gure 5). The predicted re¯ectances appeared visually acceptable as they fell within
a standard deviation of the Spectron SE 590 mean re¯ectances. The errors between
the predicted and actual re¯ectances for the grass (W) validation target were calcu-
lated (table 2). The two-point approach performed the worst, but this was mainly
due to the errors in the 450nm waveband which the three-point approach minimizes.

5. Discussion of the methodology
The empirical line method has proved to be capable of providing acceptable

calibration of sensor radiance measurements to estimates of ground re¯ectance,
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EML linear approximation closely matches field-measured spectrum
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Unsupervised Domain Adaptation
Cuprite Av97 vs. Hyp11 Results
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Figure 2: Whitened class means for Av97 (left) and Hyp11 (right) images. Sample counts for each class are as

follows: Calcite: 1076, Jarosite+Alunite: 55, Alunite: 336, Kaolinite: 382, Muscovite: 425.

using Algorithm 1 (R
∗
-ST) yields comparable results to using labeled pivots (R-ST) for domain

adaptation. However, in the Av97⇒Hyp11 scenario, we see worse domain adaptation performance

along with a larger gap between the R-ST and R
∗
-ST results. Recall that the mapping between

domains is defined by the source pivots, so if the classes are better separated in the target domain

then in the source (e.g. the Hyp11⇒Av97 scenario), the mapping performs well. However, if the

target data is less separable than the source (e.g. the Av97⇒Hyp11 scenario), then the source pivots

may not discriminate ambiguous target classes.
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Figure 3: Classification accuracies for contexts described in Section 2 (left two plots) and Pdiv scores vs.

pivots/class Qk (right two plots) for Av97⇒Hyp11 and Hyp11⇒Av97 scenarios. Black diamonds indicate the

best Pdiv score for the R
∗
-ST context yielding the classification accuracy in the left two plots.

For the Av97⇒Hyp11 scenario, Qk = 10 attains the minimum Pdiv value, where we also observe

the maximum R
∗
-ST classification accuracy. Also, Pdiv increases with Qk while the R

∗
-ST accu-

racy remains relatively constant, indicating that additional pivots determined by the Av97 source

data do not improve domain adaptation. In the Hyp11⇒Av97 scenario, while we see a gradual de-

crease in Pdiv for increasing Qk – with slight improvements in accuracy, the Av97 classes are well

separated for mid-range Qk values ∈ {10, . . . , 50}. For small Qk, we observed low accuracy in all

of R-S, R-T and R
∗
-ST cases, indicating the pivot set is inadequate to describe the classification task.

We can filter such degenerate cases by ensuring that the R-space accuracy on the source data (R-S)

is approximately the same as in the original feature space (S) (an approach also described in [2]).

This allows us to define a lower limit on the number of pivots necessary to define a feature space ex-

pressive enough for domain adaptation. We note that accuracy on the within-domain cases (S, T) are

approximately equivalent to their corresponding R-space cases (R-S, R-T) when Qk is sufficiently

large (Qk ≥ 10). We also note that when target labels are available for domain adaptation (R-ST),

we achieve relatively high accuracy even for small Qk.

3 Conclusions and Future Work

In this paper, we provided an extension to structural correspondence learning in continuous domains

built upon our previous work in domain adaptation [5], [6], and provided a methodology to auto-

matically select pivot samples to reconcile differences between domains. We show empirically that

when between-class distances are preserved across domains, our automated pivot sample selection

technique performs competitively to the case when labeled target samples are available to define a

mapping between domains. In future work we will investigate the theoretical relationship between

the implicit kernel mapping described in [1] to the R-transform (Equation 1) in the contexts of mul-

ticlass classification and domain adaptation.

4

S, T:          source, target  
R-S, R-T:  R-space source, target 
ST:            source-to-target (baseline)
R-ST:        supervised MCCL
R*-ST:       unsupervised MCCL

• R-space as discriminative 
as original feature space

• R-ST R*-ST comparable 
(≤2% diff)
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Unsupervised Domain Adaptation
Av97, Hyp11 Per-derivate Accuracy 
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1.000 0.962 0.744 0.936

1.000 0.972 0.764 0.909

0.999 0.941 0.544 0.661

0.996 0.912 0.477 0.443

dκ/dwavelength

Class Means
Accuracy
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‣Given Q paired samples (PS, PT ), the rotation matrix T 
which minimizes

            
is computed as follows:

where

Kabsch Algorithm (TRIAL transformations)

70

T = W (s)VT

s = [1, . . . , 1, (det(WVT ))]
VDWT = ( (PS , PT ))

  ε = RMSD(T·PS, PT )
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MARTIAL Accuracy vs. Qk

71

207

with the baseline classifier. The remaining classes are challenging to separate, as

indicated by the roughly comparable performance to the baseline using each of the

domain adaptation algorithms. On average, however (as shown in Table 6.5 below),

classifying source samples transformed by MARTIAL yields slightly better accuracies

than the baseline.
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Fig. 2. Classification accuracy vs. number of seed samples Qi for
the Av97⇒Hyp11(left) and Hyp11⇒Av97(right) scenarios

Figure 3 gives the accuracy vs. the number of seed samples Qi

for the Av97⇒Hyp11(left) and Hyp11⇒Av97(right) scenarios for
the MCCL algorithm applied in the original source feature space
(MCCL) vs. the MARTIAL seed (MCCLseed) and align (MCCLalign)
features.
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Fig. 3. Classification accuracy vs. number of seed samples Qi for
the Av97⇒Hyp11(left) and Hyp11⇒Av97(right) scenarios

Conclusions

In this work, we introduced the MARTIAL algorithm for multiclass
domain adaptation via manifold alignment. By learning a set of
transformations for each class using a variant of the TRIAL algo-
rithm, we demonstrated 5-10% improvements in classification ac-
curacy over the manifold alignment using procrustes analysis tech-
nique, and 2-5% improvements over our previously-proposed do-
main adaptation technique, MCCL.

References

[1] Wonkook Kim, Melba M Crawford, and Joydeep Ghosh, “Spa-
tially Adapted Manifold Learning for Classification of Hy-
perspectral Imagery with Insufficient Labeled Data,” Proc.

2008 International Geosci. and Sens. Symposium (IGARSS08),
2008.

[2] Claudio Persello and Lorenzo Bruzzone, “A novel active learn-
ing strategy for domain adaptation in the classification of re-
mote sensing images,” IEEE Geoscience and Remote Sensing

Symposium, pp. 3720–3723, 2011.

[3] Suju Rajan, Joydeep Ghosh, and Melba M Crawford, “Exploit-
ing Class Hierarchies for Knowledge Transfer in Hyperspectral
Data,” IEEE Trans. on Geoscience and Remote Sensing, vol.
44, no. 11, pp. 3408–3417, 2006.

[4] Wonkook Kim and Melba M Crawford, “Adaptive classifica-
tion for hyperspectral image data using manifold regularization
kernel machines,” Geoscience and Remote Sensing, 2010.

[5] Lorenzo Bruzzone and Mattia Marconcini, “Domain Adap-
tation Problems: A DASVM Classification Technique and a
Circular Validation Strategy,” IEEE Trans. on Pattern Analysis

and Machine Intelligence, vol. 32, no. 5, pp. 770–787, 2010.

[6] Hsiuhan Lexie Yang and Melba M Crawford, “Manifold Align-
ment For Classification Of Multitemporal Hyperspectral Data,”
Proc. IEEE WHISPERS, pp. 1–4, Apr. 2011.

[7] Jayendra Venkateswaran, Bin Song, Tamer Kahveci, and Chris
Jermaine, “TRIAL: A Tool for Finding Distant Structural Sim-
ilarities,” IEEE/ACM Transactions on Computational Biology

and Bioinformatics, vol. 8, no. 3, pp. 819–831, 2011.

[8] W Kabsch, “A discussion of the solution for the best rotation
to relate two sets of vectors,” Acta Crystallographica Section

A: Crystal Physics, vol. 34, pp. 827–828, Sept. 1978.

[9] Brian D Bue and David R Thompson, “Multiclass Continuous
Correspondence Learning,” NIPS Domain Adaptation Work-

shop, Dec. 2011.

[10] Fred A Kruse, JW Boardman, and JF Huntington, “Compari-
son of airborne hyperspectral data and EO-1 Hyperion for min-
eral mapping,” IEEE Trans. on Geoscience and Remote Sens-

ing, vol. 41, no. 6, pp. 1388–1400, 2003.

[11] David R Thompson, Lukas Mandrake, Martha S Gilmore, and
R Castaño, “Superpixel endmember detection,” IEEE Transac-

tions on Geoscience and Remote Sensing, pp. 1–19, Jun 2010.

[12] Chang Wang and S Mahadevan, “Manifold alignment using
Procrustes analysis,” Proceedings of the 25th international

conference on Machine learning, pp. 1120–1127, 2008.

[13] C.C Chang and C.J Lin, “LIBSVM: a library for support vec-
tor machines,” ACM Transactions on Intelligent Systems and

Technology (TIST), vol. 2, no. 3, pp. 27, 2011.

misclassified samples are from nonlinearly separable or potentially
mixed/overlapping classes.
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Fig. 2. Classification accuracy vs. number of seed samples Qi for
the Av97⇒Hyp11(left) and Hyp11⇒Av97(right) scenarios

Figure 3 gives the accuracy vs. the number of seed samples Qi

for the Av97⇒Hyp11(left) and Hyp11⇒Av97(right) scenarios for
the MCCL algorithm applied in the original source feature space
(MCCL) vs. the MARTIAL seed (MCCLseed) and align (MCCLalign)
features.
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Fig. 3. Classification accuracy vs. number of seed samples Qi for
the Av97⇒Hyp11(left) and Hyp11⇒Av97(right) scenarios

Conclusions

In this work, we introduced the MARTIAL algorithm for multiclass
domain adaptation via manifold alignment. By learning a set of
transformations for each class using a variant of the TRIAL algo-
rithm, we demonstrated 5-10% improvements in classification ac-
curacy over the manifold alignment using procrustes analysis tech-
nique, and 2-5% improvements over our previously-proposed do-
main adaptation technique, MCCL.
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Figure 6.9 : Classification accuracy vs. number of seed samples Qk for the
Av97⇒Hyp11 (left) and Hyp11⇒Av97 (right) scenarios with the baseline (ST, black
�), Procrustes alignment (red �), and MARTIAL Seed (purple ×), Align (turquoise
∗), and Improve (orange ◦). The feature spaces produced using MARTIAL are better
reconciled than the original (ST) and Procrustes-aligned feature spaces, as evidenced
by the increase in classification accuracy.

We observe more substantial improvements in classification accuracy when we

classify our data in the R-space (Equation (5.1)) after applying MARTIAL. These

results are shown in Figure 6.10. In the Av97⇒Hyp11 scenario, classifying the target

samples in the R-space using the source data transformed by MARTIAL produces

uniformly better results for all Qk than in the R-space with the original source features

(RS), indicating that the domains are better reconciled after applying the MARTIAL

209

scenario, and perform comparably to MCCL in the Hyp11⇒Av97 scenario. We also

note that the accuracies produced after applying the Align step are typically equal

or slightly better than those produced after the subsequent Improve step. This may

be somewhat surprising, as one may expect that incorporating additional samples

in the Improve step would produce a more robust alignment between the domains.

However, since the pivots from each class are highly-correlated, using a large number of

redundant pivots often produces worse results than using a smaller set of less-redundant

pivots.

ST Proc. Seed Align Imp. RS RSeed RAlign RImp.

Av97⇒Hyp11 71.49 73.29 81.69 82.35 81.67 80.27 83.10 83.20 83.08

Hyp11⇒Av97 93.99 82.75 93.43 94.28 94.05 95.82 92.69 95.11 94.36

Table 6.5 : Average accuracy over the range of selected Qk values for each technique.

The first and second most accurate results are given in red and blue italics, respectively.
71Tuesday, April 16, 2013



B. Bue: Adaptive Similarity Measures

RelTrans vs. Baseline Techniques

72

177

not degrade the classification accuracy in the other direction (as in the Hyp11⇒Av97

scenario). As we show later in Section 6.7, we can potentially improve these results by

selecting source and target pivots that better preserve inter-class relationships across

domains, rather than using the pivots nearest to their respective class means in the

supervised setting.

A
v
9
7
⇒
H
y
p
1
1

S T ST

Base 0.9963 0.9679 0.7429

0.0027 0.0098 0.0098

Qk R-S R-T* R-T R-ST* R-ST PivST* PivST AugST* AugST

Mean 0.9918 0.9189 0.9211 0.8258 0.8498 0.7478 0.8717 0.7469 0.8638

Std 0.0042 0.0119 0.0118 0.0111 0.0133 0.0182 0.0120 0.0131 0.0155

H
y
p
1
1
⇒
A
v
9
7

S T ST

Base 0.9679 0.9963 0.9428

0.0098 0.0027 0.0057

Qk R-S R-T* R-T R-ST* R-ST PivST* PivST AugST* AugST

Mean 0.9202 0.9925 0.9920 0.9668 0.9908 0.9665 0.9818 0.9611 0.9653

Std 0.0130 0.0043 0.0037 0.0073 0.0037 0.0121 0.0052 0.0091 0.0065

Table 6.1 : Mean and standard deviation of classification accuracy in the

Av97⇒Hyp11 and Hyp11⇒Av97 scenarios using different baseline techniques using

the Qk ∈ {10, 25, 50, 75, 100} pivot samples. The mean accuracy over the range of

Qk values is provided for each technique. In the unsupervised context, R-ST* matches

or outperforms both PivST* and AugST* techniques. In the supervised context R-ST

outperforms PivST/AugST in the Hyp11⇒Av97 scenario, but performs slightly worse

than PivST/AugST in the Av97⇒Hyp11 scenario. This discrepancy is likely caused

by selecting the source and target pivots near the means of each class, which slightly

misaligns samples in the R-space.

We also compared our results to several related domain adaptation techniques. Each

of the following techniques computes transformation functions TD
(x

D
) : Rn → Rm

,

for m > 0, D ∈ {S, T}, that reconcile the differences between the source and target

feature spaces. However, each algorithm described below assumes a set of labeled

target samples are available to guide the reconciliation process between the domains.

To provide a balanced comparison to our results, we provide each algorithm with the

set of target pivots selected by MCCL as the labeled target domain data.

H
yp

11
⇒

A
v9

7
A
v9

7⇒
H

yp
11

PivST: Classifier trained with pivots alone (PivST*=unsupervised)  
AugST: Classifier trained with source data + pivots (AugST*=unsupervised)  

RelTrans: Best performance in unsupervised case
                Some misalignment in supervised case (between src/tgt means)
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