Metric Learning for Hyperspectral Image Segmentation
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Application: Superpixel Segmentation mompson eta., 2010

e Find spatially contiguous, spectrally homogeneous regions (“superpixels”)
corresponding to physical features

e Reduces processing time of subsequent analyses

* Yields theoretical noise improvement of order n”z for a superpixel of size n
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Graph-based Segmentation Algorithm (reizenszwato)

¢ Image = 8-connected graph weighted by distances d(xi,xj) between adjacent pixels x; and x;

e Agglomerative clustering iteratively connects segments by growing minimum spanning trees

d(x; x))

Dif(S,,S,) Mint(S,,S,)

e Segment merging criterion:

Dif(S,, Sp) >MInt(S,, Sp) = min (Int(Sa) + |§ ‘,Int(Sb) + ’g—o
a b

e Small k = many segments, large k = few segments, dependant on d(Xi,Xj)



Metric Learning for Hyperspectral Image Segmentation

e Segmentation quality dependent on robustness of spectral similarity measure

Learned metrics can
emphasize spectral bands
5| relevant to training classes
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Mahalanobis Metric Learning

e Goal: learn a task-specific Mahalanobis metric given labeled data
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e M = AAT — positive semi-definite transformation matrix
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e Squashes uninformative / emphasizes informative dimensions w.r.t. classes

Image credit: Weinberger et al. NIPS 2010



Multiclass Linear Discriminant AnalysSis [isner. 1934
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* S maximized when v the top eigenvector of 33, "+ 33,
* A =top (k-1) eigenvectors of Ew_lzb

e To prevent degenerate solutions, regularize:

S = (1= )2y + 41, v €[0,1]



Information Theoretic Metric Learning (ITML) avis et al. 2007]

e Bijection between Mahalanobis distances and multivariate Gaussians

1 1
N (x|, M) = - eXp(—§dM (x, 1)) (assume fixed L)
* Solve:
N(ZC|,LL, MO)
mm/N z|p, M) log ( N (2] M) )dx

* M, = regularization term - known, well-behaved Mahalanobis matrix
(e.g., identity or sample covariance matrix)

e Subject to M > 0 and pairwise similarity/dissimilarity constraints:
dna(@i, ) < u— (i,5) € S
dyv(zs, ) 21— (i,5) € D



Evaluation Methodology

Hyperspectral Scale Spectra by
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=

Expert Defines
Training Regions

(100 samples/class)

Segment Image
with Learned Metric

—>

Superpixel
Segmentation Map

Sample Training Learn Metric from
Regions Training Samples

kel 1]

o # of segments (for a fixed image) dependant on (1) similarity metric and

(2) segmentation parameter k

e Vary k to compare segmentation maps with similar # of segments for each

measure




Case Study: CRISM Imagery

FeMg Smectite (6443) [_]
Kaolinite (4051)
Montmorillonite (10901) =
Nontronite (4753)
Neutral Region (115225)

e Images: FRT 3e12, 3fb9, 863e
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Evaluation Measures

e For a set of classes ('and a set of segments S

« H(C|S) = Z p(c, s) pz(?éci)

* Measures remaining uncertainty in class map given segmentation partitions

e |f segmentation reproduces class map, H( C| S) =

. purity(S, C) = Zl P(.** )
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* pure(s,C) =1 if all pixels in segment s belong to a single class ¢ in C




Image 863e Segmentation Results
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Image 863e Segment Purity Scores

Pure Segments (%)

Class (# pixels) Euc | LDA | ITML
FeMg Smectite (6443) 26 49 48
Kaolinite (4051) 98 99 99
Montmorillonite (10901) 11 31 17
Nontronite (4753) 37 52 40
Neutral Region (115225) | 97 99 98
Average (141373) 53 66 60




H(C|S) Results: Images 3e12, 3fb9, 863e
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Conclusions / Future Work

| earned metrics can significantly improve the quality of
hyperspectral segmentation results

e Simple techniques (e.g., LDA) with only a few training samples
often outperform more computationally expensive metric
learning methods

e Additional samples may improve ITML accuracy

e Future work: comparison to additional metric learning
algorithms (neighborhood components analysis, relevant
components analysis), and transfer learning scenarios

* |nitial results indicate LDA competitive with state of the art
Mahalanobis metric learning algorithms
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HIHAT IDL/ENVI Toolkit
http://hyperspectral.jpl.nasa.gov

00600 Hyperspectral Analysis Toolkit, Jet Propulsion Laboratory, California Institute of Technology

» ENVI Toolkit for —r
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Overview

.
. I I l C I u d eS S u p e r p IXe I Hyperspectral imagery has provided dramatic new insight into the

geology and atmosphere of other planets. However, understanding
these images can be quite challenging since scientists can only
visualize a small number of bands. The Hyperspectral Image

n
50 Interpretation and Holistic Analysis Tools (Hii-Hat) is an intelligent

assistant to help analysts efficiently browse, summarize, and search
b hyperspectral images. The software is available as a plugin to the

IDL/ENVI environment. The algorithms we have developed are
designed for the special challenges of planetary science datasets:

"
e I l d I I l e I I I b e r d eteCt I O I I « High noise levels Many of the most interesting planetary
, science questions involve spectral features at the limits of

robust ies capable of

e
detecting subtle spectral features with high levels of noise.

« Uncertain constituents Unlike terrestrial remote sensing, we
ea l I re e I I al l C el I l el I have very few if any samples from the surface. We address this
with "unsupervised” analysis that looks for patterns in the

observed data itself. B e > F
« Fast turnaround time Tactical observation planning may require [y T

a n d m et ri C I ea r n i n fast decisions, favoring automation where appropriate.
g The software toolkit includes automatic procedures to search images for key features and draft analyses for operators. More in-depth studies can benefit

from interactive analysis procedures. This page describes these basic functions with examples based on Compact Reconnaissance Imaging Spectrometer
(CRISM) data. CRISM has been observing Mars from the Mars Reconnaissance Orbiter spacecraft.

functions

* Free, non-commercial research licenses available
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