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•  Images captured under differing conditions (e.g., different sensors, atmospheric 
conditions, spatial locations, capture dates) commonly share similar materials

•  Reconciling differences between images allows us to train a classifier using labeled 
spectra from one image (source) to label other, similar (target) imagery

•  Reduces, expensive, tedious and error-prone manual labeling 

•  Facilitates class knowledge transfer from synthetic to real imagery

Transferring Class Knowledge Between Images
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Relational Class Knowledge Transfer (RelTrans) [Bue et al., 2010]
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•  All classes in source image present in 
target image

•  At least 1 control point per source class

•  Transfer accuracy = % of correctly 
labeled target pixels

Domain Adaptation & Target Detection Scenarios

Source Image Classes
Domain Adaptation

Target Detection
•  Some classes in target image not present 

in target image
•  At least 1 control point per source class

•  Transfer accuracy = % of correctly labeled 
target pixels belonging to source classes

•  Pixels incorrectly flagged as unknowns 
considered errors

•  Accuracy reported on unflagged pixels only



Target Detection: RelThresh

• Target imagery will often contain classes not present in source imagery

• Need a mechanism to flag pixels as “unknowns” 

• Class likelihoods = relsim distances to source and target control point 
class means:"

• RelThresh procedure: select T as the maximum relsim likelihood value 
which flags no control points as unknowns

• Advantages:

• RelTrans feature space allows for single threshold for all classes

• Simple to compute (linear scan of control point likelihood values)



Synthetic Transfer Assessment: "
Distorted vs. Clean Source Spectra

•  Target image: DIRSIG1: 210 band, 4m/pixel 
DIRSIG [Schott et al 1999] synthetic HYDICE 

•  Source images:

•  DIRSIG2G: “cleaner” DIRSIG1 image with 
reduced atmospheric effects and fewer 
shadow pixels 

•  DIRSIG2B: poorly atmospherically calibrated 
version of DIRSIG2G image

Mean signatures: DIRSIG1 and DIRSIG2 control points

DIRSIG1 RGB Composite and Material Map



Synthetic to Real Class Knowledge Transfer

•  Target image: 224-band AVIRIS image of 
Ocean City, MD "
[Csathó et al., 1998, Merényi et al 2009]

•  Common materials to source and target 
images: road/sidewalk (asphalts, 
concrete), building materials (siding, 
rooftops), vegetation (grass, trees)

•  Source image: DIRSIG2G HYDICE image

Ocean City, MD 
AVRISLA Image  

Mean signatures: DIRSIG2G, AVIRIS control points

Segmentation 
Map



Evaluation Methodology

Cross-validation loop (5-fold)

Sample Source/Target Images 
(stratified, 1000 pixels / image)

Define (up to) 50 control 
points / source class

Scale pixels by their L2 norms 
(illumination normalization)

[Pouch et al. 1990]
Split pixels (50/50) into 
training and test sets

Evaluate MinDist  
transfer accuracy

(all test pixels) 

Evaluate RelTrans 
transfer accuracy

(all test pixels) Flag nflag pixels via 

RelThresh procedure 

Flag nflag worst 

MinDist predictions

Report average 
transfer accuracy

Evaluate MinDist  
transfer accuracy 
(correctly flagged 

test pixels)

Evaluate RelTrans 
transfer accuracy 
(correctly flagged 

test pixels)



Synthetic Image Target Detection Results

•  6 common classes (561 samples) + 5 target-only classes (439 samples)
• Max possible transfer accuracy w/o flagging = 56% 

• All target-only pixels correctly flagged by RelThresh



Synthetic to Real Domain Adaptation Results

• Highly correlated control points may reduce transfer accuracy
•  Particularly if correlated in only one of the source or target spaces

• Filtering/decorrelating control points could improve results

Class G, f control points  



Synthetic to Real Target Detection Results

•  6 common classes (539 samples), 5 target-only classes (431 samples)
• Maximum transfer accuracy w/o flagging: 54%

• RelTrans nearly achieves target classification accuracy "
(despite correlated control points)



Conclusions / Future Work

• When two images share some material classes, it is possible to train accurate 
classifiers using only one of the images (the source) as training data with a 
few source-to-target control points

• Control points provide useful information to distinguish between classes 
present only in the source or target images

• Classifying target pixels using the RelTrans transform performs best when 
control points are not highly correlated in source and target imagery

• Currently exploring methods to automatically detect source and target 
correspondence points

• Using adaptive spectral similarity measures in the RelTrans transform may 
improve knowledge transfer performance
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Target Detection: Synthetic Data



Target Detection: Synthetic-to-Real Data



RelTrans Algorithm



RelThresh Algorithm



Evaluation Methodology

1.  Choose 1000 labeled (reflectance) pixels via stratified sampling from source 
and target images

2.  Define (up to) 50 control points for each source class

3.  Scale all pixels by their L2 norm to compensate for linear illumination effects 
[Pouch et al. 1990]

4.  Split samples (50/50) into train / test sets (averaged over 5 folds)

A.  Calculate baseline transfer accuracy by classifying target samples using a 
minimum distance to class means classifier (MinDist) 

B.  Classify target samples after applying RelTrans transform 

C.  Flag nflag target pixels via RelThresh procedure

D.  Flag nflag worst MinDist predictions 

5.  Report transfer accuracy for MinDist and RelTrans before and after flagging


